过点(1,0)的直线l与中心在原点,焦点在x轴上且离心率为√2/2的椭圆C相交于A、B两点,直线y=x/2过线段AB的中
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 19:48:34
过点(1,0)的直线l与中心在原点,焦点在x轴上且离心率为√2/2的椭圆C相交于A、B两点,直线y=x/2过线段AB的中点,同时椭圆C上存在一点与右焦点关于直线l对称,试求直线l与椭圆C的方程.
直线x+y-1=0与椭圆x^2/a^2+y^2/b^2=1相交于M(x1,y1)、N(x2,y2)
向量OM*向量ON=-7
x1x2+y1y2=-7
把y=1-x代入x^2/a^2+y^2/b^2=1得:
b^2x^2+a^2(1-x)^2=a^2b^2
(a^2+b^2)x^2-2a^2x+a^2-a^2b^2=0
x1+x2=2a^2/(a^2+b^2),x1x2=(a^2-a^2b^2)/(a^2+b^2)
y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=(b^2-a^2b^2)/(a^2+b^2)
所以,x1x2+y1y2=1-2a^2b^2/(a^2+b^2)=-7
a^2b^2/(a^2+b^2)=4
而:e=c/a=√3/2,b^2=a^2-c^2=a^2-3a^2/4=a^2/4
解方程组:
a^2b^2/(a^2+b^2)=4
b^2=a^2/4
得:
a^2=20,b^2=5
所以,椭圆标准方程:x^2/20+y^2/5=1
向量OM*向量ON=-7
x1x2+y1y2=-7
把y=1-x代入x^2/a^2+y^2/b^2=1得:
b^2x^2+a^2(1-x)^2=a^2b^2
(a^2+b^2)x^2-2a^2x+a^2-a^2b^2=0
x1+x2=2a^2/(a^2+b^2),x1x2=(a^2-a^2b^2)/(a^2+b^2)
y1y2=(1-x1)(1-x2)=1-(x1+x2)+x1x2=(b^2-a^2b^2)/(a^2+b^2)
所以,x1x2+y1y2=1-2a^2b^2/(a^2+b^2)=-7
a^2b^2/(a^2+b^2)=4
而:e=c/a=√3/2,b^2=a^2-c^2=a^2-3a^2/4=a^2/4
解方程组:
a^2b^2/(a^2+b^2)=4
b^2=a^2/4
得:
a^2=20,b^2=5
所以,椭圆标准方程:x^2/20+y^2/5=1
过点Q(1,0)的直线l与中心在原点,焦点在x轴上且离心率为根号2/2的椭圆C相交于A,B两点,直线y=1/2x过线段A
已知椭圆E中心在原点O,焦点在X轴上,其离心率e=根号(2/3),过C(-1,0)的直线L与椭圆E相交于A,B两点,且满
已知椭圆C:x^2+y^2/m=1的焦点在y轴上,且离心率为√3/2.过点M(0,3)的直线l与椭圆C相交于AB两点.
已知中心在原点,焦点在x轴上的椭圆的离心率为√2/2,F1,F2为其焦点,一直线过点F1与椭圆相交于A,B两点,且△F2
已知椭圆C:x^2+y^2/m=1的焦点在y轴上,且离心率为根号3/2,过点(0,3)的直线l与椭圆C交与两点A,B.
乙知椭圆C:x^2+y^2/m=1的焦点在y轴上,且离心率为了根号3/2,过点M(O,3)的直线l与椭圆C相交于A,B,
已知直线y=-x+1与椭圆 相交于A、B两点,且线段AB的中点在直线L:x-2y=0上,则此椭圆的离心率为_______
1.中心在坐标原点,焦点在x轴上的椭圆,它的离心率为√3/2,与直线x+y-1=0相交于两点M,N,且OM⊥ON.求椭圆
已知椭圆的中心在原点,焦点在x轴上,离心率为根号3/2,且过点M(4,1)直线l:y=x+m教育椭圆A,B两不同点
已知中心在原点,焦点在坐标轴上的椭圆与直线x+y=1相交于A,B两点,且AB=2√2,连结AB的中点与原点的直线斜率为√
椭圆c的中心在原点焦点f1f2在x轴上离心率为根号2/2过f1的直线l交c于ab两点且三角形abf2的周长为16
已知中心在原点,焦点在X轴上的椭圆的离心率为2分之根号2,F1F2为其焦点,一直线过点F1与椭圆相交于A,B两