如图,∠AOB=30°,∠AOB内有一定点P,且OP=10.在OA上有一点Q,OB上有一点R.若△PQR周长最小,则最小
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 11:23:08
如图,∠AOB=30°,∠AOB内有一定点P,且OP=10.在OA上有一点Q,OB上有一点R.若△PQR周长最小,则最小周长是______.
设∠POA=θ,则∠POB=30°-θ,作PM⊥OA与OA相交于M,并将PM延长一倍到E,即ME=PM,
作PN⊥OB与OB相交于N,并将PN延长一倍到F,即NF=PN,
连接EF与OA相交于Q,与OB相交于R,再连接PQ,PR,则△PQR即为周长最短的三角形,
∵OA是PE的垂直平分线,
∴EQ=QP;
同理,OB是PF的垂直平分线,
∴FR=RP,
∴△PQR的周长=EF,
∵OE=OF=OP=10,且∠EOF=∠EOP+∠POF=2θ+2(30°-θ)=60°,
∴△EOF是正三角形,
∴EF=10,即在保持OP=10的条件下△PQR的最小周长为10.
故答案为:10.
作PN⊥OB与OB相交于N,并将PN延长一倍到F,即NF=PN,
连接EF与OA相交于Q,与OB相交于R,再连接PQ,PR,则△PQR即为周长最短的三角形,
∵OA是PE的垂直平分线,
∴EQ=QP;
同理,OB是PF的垂直平分线,
∴FR=RP,
∴△PQR的周长=EF,
∵OE=OF=OP=10,且∠EOF=∠EOP+∠POF=2θ+2(30°-θ)=60°,
∴△EOF是正三角形,
∴EF=10,即在保持OP=10的条件下△PQR的最小周长为10.
故答案为:10.
..如图.已知角AOB内有一个点P.求作 三角形PQR,使Q在OA上.R在OB上.且是三角形PQR的周长最小?.
初中数学试题求助角OAB为30度,在OAB内有一点P,OP=8,在OA和OB上分别有一点Q、R,求三角形PQR的周长最小
如图,已知∠AOB=30°,点P为∠AOB内一定点,且OP=5cm,点M,N分别在OA,OB上运动.
如图角aob=45度,p是角aob上一点,po=10,q在oa上,r在ob上,使三角形pqr的周长最小 要求画出图形并算
∠AOB的两边OA,OB都为平面反光镜.∠AOB=40°,在OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射
已知∠AOB=30°,在OB上有一点P,OP=4,若以P为圆心,R为半径作圆,若圆与射线OA相切则切
如图,∠AOB=40°,边OA为平面镜,在OB上有一点P,从P点射出一束光线经OA上的Q点反射后,反射光线QR恰好与OB
已知P为∠AOB内任意一点,且∠AOB=30°,P1、P2分别在OA、OB上,求做点P1、P2,使△PP1P2的周长最小
如图,已知∠AOB和∠AOB内一点P,你能在OA和OB边上各找一点Q和R,使得由P、Q、R三点组成的三角形周长最小
如图,已知∠AOB内一定点P,能否在OA、OB上各找一点M、N,使△PMN的周长最小.
如图,∠AOB=30°,点P在∠AOB内,且OP=5,点E,F分别是点P关于OA,OB的对称点,则EF=
已知:如图,∠AOB内一点P,∠AOB=60°,OP=6,在OA,OB上作一点M,N,使△MPN的周长最短,并求出它的值