对于函数f(x)=kx+p及实数m,n(m0,f(n)>0,则对于一切实数x属于(m,n)都有f(x)>0
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 23:17:36
对于函数f(x)=kx+p及实数m,n(m0,f(n)>0,则对于一切实数x属于(m,n)都有f(x)>0
(1)证明上述命题是真命题(怎么证啊)
(2)若对于-6小于等于x小于等于4,不等式2x+20>k平方x+16K恒成立,求k范围
1的过程该怎么写呢?
(1)证明上述命题是真命题(怎么证啊)
(2)若对于-6小于等于x小于等于4,不等式2x+20>k平方x+16K恒成立,求k范围
1的过程该怎么写呢?
答1:函数f(x)=kx+p为斜率为k的直线,为单调函数(单调递增或单调递减),且x属于(m,n),f(m)>0,f(n)>0,如果有一点x使f(x)小于或等于0,则在[m,x)或(x,n]中有一边f(x)<0,即f(m)<0或f(n)<0.故一切实数x属于(m,n)都有f(x)>0.
另一方法是讨论k<0,k=0,k>0时f(x)的递增递减情况.
答2:解不等式方程组6k2-16k+8>0,4k2+16k-28<0.
另一方法是讨论直线f(x)=(2-k2)x+20-16K在-6≤x≤4内的情况.
另一方法是讨论k<0,k=0,k>0时f(x)的递增递减情况.
答2:解不等式方程组6k2-16k+8>0,4k2+16k-28<0.
另一方法是讨论直线f(x)=(2-k2)x+20-16K在-6≤x≤4内的情况.
已知函数f(x)=kx+p(k≠0)及实数m、n,(m0,f(n)>0,则对一切x∈[m,n],都有f(x)>0
帮忙证明下面命题命题:f(x)=kx+b(k不等于0),若m0,f(n)>0,则对于任意的x属于[m,n],都有f(x)
设函数f(x)的定义域为R,对于任意实数m,n总有f(m+n)=f(m)*f(n),且x>0时,0
函数f x 的定义域为R,对于任意实数m,n,恒有f(m+n)=f(m)f(n),且当x>0时,0
设函数f(x)的定义域是R,对于任意实数m,n,恒有恒有f(m+n)=f(m)×f(n),且x>0时
1.函数f(x)对于任意实数m,n都有f(m+n)=f(m)+f(n)-1,并且当x>0时,f(x)>1.求证:f(x)
高一数学~已知函数f(x)对于任何实数m,n都有:f(m+n)=f(m)+f(n)-1,且当x>0时,都有f(x)>0
设函数的定义域是R,对于任意实数m,n,恒有f(m+n)=f(m)f(n),且当x>0时,0
定义在R+上的函数f(X),对于任意的m,n属于正实数都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)
函数f(x)对于任意的m,n属于R,都有f(m+n)=f(m)+f(n)-1,且x>0时,f(x)>0,求证f(x)在R
函数f(x)的定义域为R,若对一切实数m.n都有f(m-n)=f(m)+(n-2m-1)n成立.且f(0)=1,求f(x
设函数y=f(x)定义在R上,对于任意实数m,n恒有f(m+n)=f(m)*f(n),且当x大于0时,0小于f(x)小于