已知f(x)的导函数为f ’(x),且2f(x)+xf '(x)>x^2 ,则下面在R上恒成立的是
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 14:47:59
已知f(x)的导函数为f ’(x),且2f(x)+xf '(x)>x^2 ,则下面在R上恒成立的是
已知f(x)的导函数为f ’(x),且2f(x)+xf '(x)>x^2 ,则下面在R上恒成立的是
A.f(x)>0 B .f(x)x D.f(x)x
已知f(x)的导函数为f ’(x),且2f(x)+xf '(x)>x^2 ,则下面在R上恒成立的是
A.f(x)>0 B .f(x)x D.f(x)x
因为 2f(x)+xf′(x)>x^2 …………①,下面予以讨论:
(1)x= 0时,代入①得:f(0) > 0
(2)x>0 时,①的两边同乘以x :2xf(x)+x^2f′(x) > x^3 ,即
[x^2f(x)]′> x^3>0,所以函数y= x^2f(x)是R+上的增函数,而x>0,
故:x^2f(x) > 0^2f(0) = 0 ,所以 f(x) > 0
(3)x<0 时,①的两边同乘以x :2xf(x)+x^2f′(x) < x^3 ,即
[x^2f(x)]′<x^3< 0,所以函数y= x^2f(x)是R-上的增函数,又x< 0,
故:x^2f(x)> 0^2f(0) = 0 ,所以也有 f(x) >0
综上可知,x∈R 时,总有 f(x)>0 所以选 A.
显然 f(x)=x^2 +a(a>0)时 已知条件 2f(x)+xf′(x)>x^2 成立,但
f(x)>x 未必成立,所以C也是错的,故选 A
(1)x= 0时,代入①得:f(0) > 0
(2)x>0 时,①的两边同乘以x :2xf(x)+x^2f′(x) > x^3 ,即
[x^2f(x)]′> x^3>0,所以函数y= x^2f(x)是R+上的增函数,而x>0,
故:x^2f(x) > 0^2f(0) = 0 ,所以 f(x) > 0
(3)x<0 时,①的两边同乘以x :2xf(x)+x^2f′(x) < x^3 ,即
[x^2f(x)]′<x^3< 0,所以函数y= x^2f(x)是R-上的增函数,又x< 0,
故:x^2f(x)> 0^2f(0) = 0 ,所以也有 f(x) >0
综上可知,x∈R 时,总有 f(x)>0 所以选 A.
显然 f(x)=x^2 +a(a>0)时 已知条件 2f(x)+xf′(x)>x^2 成立,但
f(x)>x 未必成立,所以C也是错的,故选 A
设函数f(x)在R上的导函数为f′(x),且2f(x)+xf′(x)>x2,下面的不等式在R内恒成立的是( )
设函数f(x)在R上的导函数为f'(x)且2f(x)+xf'(x)>x2 下面的不等式在R上恒成立的是 A.f(x)>0
设函数f(x)在R上的导函数为f'(x),且2f(x)+xf'(x)>x^2,则下列不等式在R内恒成立的是
已知函数f(x)是定义域在实数R上的不恒为0的偶函数,且对任意实数x都有xf(x+1)=(1+x).f(x),则f(2\
设函数f(x)在R上的导函数为f'(x),且2f(x)+xf'(x)>x^2.求证:f(x)>0在R上恒成立.
设f x 是定义在r上的奇函数,且f(2)=0.当x>0时,有f(x)>xf'(x)恒成立,则不等式x²f(x
已知函数y是在定义域R上的不恒为0的偶函数,且对任意实数x都有xf(x+1)=(x+1)f(x),则f【f(5/2)】的
已知函数f(x)是定义在R上的奇函数,当x>0时,f(x)满足:2f(x)+xf′(x)>xf(x),则f(x)在区间[
已知函数f(x)是定义在R上的不恒为0的偶函数,且对任意函数x都由xf(x+1)=(1+x)f(x).则f(f(5/2)
设f(x)是定义在R上的可导函数,且满足f(x)+xf'(x)>0则不等式f(√(x+2))>√(x-2﹚f(√﹙x^2
已知f(x)为定义在R上的可导函数,且f(x)<f’(x)对任意x∈R恒成立,证明:f(2)>e²×f(0),
已知f(x)为定义在(0,+∞)上的可导函数,且xf'(x)-f(x)>0,则不等式x^2f(1/x)>f(x)的解集为