作业帮 > 数学 > 作业

边长为2的等边三角形内切圆的面积是?

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 00:47:04
边长为2的等边三角形内切圆的面积是?
A.3π
B.2π
C.2π\根号三
D.π\3
E.以上都不正确
并且说明理由(解题思路)
边长为2的等边三角形内切圆的面积是?
设三个相等的边长都是a,内切圆的半径是r
3×(ar)/2=(1/2)×a^2sin60°
∵a=2
∴3r=2sin60°
r=(2sin60°)/3=√3/3
∴S=πr^2
=π/3
思路:连接内切圆圆心和三个顶点,因此可以把这个三角形分成三个小三角形,三个小三角形的高就是内切圆的半径r,因此,这三个三角形的面积就是各自的边长乘以高r/2,三个小三角形的面积之和就是大三角形的面积,所以,利用这个关系式解题,大三角形的面积就是S=absinC,其中a,b是大三角形的两条边,C是边a,b的夹角.如果不理解这个公式,说明你是初中生,初中是不用到这个公式的.所以,就解出了半径!因为这个三角形是正三角形,因此,面积也很容易算.