在数列{an}中,a1=1,a2=5,an+2=4an+1-4an,n∈N*
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 02:05:18
在数列{an}中,a1=1,a2=5,an+2=4an+1-4an,n∈N*
(1)设bn=am+1-2an,求证:{bn}是等比数列
(2)求{an}的通项公式
老师写的提示:(1)∵a1=1,a2=5
∴bn+1/bn=an+2+2an+1/am+1-2an
=4an+2-4an-2an+1/an+1-2an
=
(1)设bn=am+1-2an,求证:{bn}是等比数列
(2)求{an}的通项公式
老师写的提示:(1)∵a1=1,a2=5
∴bn+1/bn=an+2+2an+1/am+1-2an
=4an+2-4an-2an+1/an+1-2an
=
由方程式可得: An+2 - 2An+1 = 2An+1 - 4An = 2( An+1 - 2An )
也即 Bn+1 / Bn = (An+2 - 2An+1) / (An+1 - 2An) = 2
B1 = A2 - 2A1 = 5-2 = 3
所以: Bn = 3 * 2^(n-1)
//////////////////////////////////
Bn = An+1 - 2An = 3 * 2^(n-1)
所以 An+1 = 3 * 2^(n-1) + 2An
= 3 * 2^(n-1) + 2[ 3 * 2^(n-2) + 2An-1 ]
= 3 * 2^(n-1) + 3 * 2^(n-1) + 4An-1
= 3 * 2^(n-1) + 3 * 2^(n-1) + 3 * 2^(n-1) + 8An-2
=...
= n * 3 * 2^(n-1) + 2^n * A1
= (3n + 2A1) * 2^(n-1)
= (3n + 2) * 2^(n-1)
所以 An = (3n - 1) * 2^(n-2)
也即 Bn+1 / Bn = (An+2 - 2An+1) / (An+1 - 2An) = 2
B1 = A2 - 2A1 = 5-2 = 3
所以: Bn = 3 * 2^(n-1)
//////////////////////////////////
Bn = An+1 - 2An = 3 * 2^(n-1)
所以 An+1 = 3 * 2^(n-1) + 2An
= 3 * 2^(n-1) + 2[ 3 * 2^(n-2) + 2An-1 ]
= 3 * 2^(n-1) + 3 * 2^(n-1) + 4An-1
= 3 * 2^(n-1) + 3 * 2^(n-1) + 3 * 2^(n-1) + 8An-2
=...
= n * 3 * 2^(n-1) + 2^n * A1
= (3n + 2A1) * 2^(n-1)
= (3n + 2) * 2^(n-1)
所以 An = (3n - 1) * 2^(n-2)
在数列{an}中,a1=1,a2=5,an+2=an+1-an (n∈N*),则a100等于( an+2=an+1-an
在数列{an}中,已知(a1+a2+…+an)/n=(2n-1)an
在数列{an}中,an=4n-5/2,an=4n-5/2,a1+a2+...+an=an^2+bn,其中n属于N*,a、
已知数列{an}中,a1=2,a2=4,an+1=3an-2an-1(n≥2,n∈N*).
在数列{an}中,a1=2,an+1=4an-3n+1,n∈N※
在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*
在数列{an}中,a1=2,an+1=4an-3n+1,n∈N*.
在等差数列{an}中,a1=1,a2=3,an+2=3an+1-2an(n属于N+)证明数列{an+1-an}是等比数列
在数列{an}中,a1=2,an+1=4an-3n+1
数列{an}中,a1+a2+a3···+an=2n+1(n∈N※),求an
【高中数列】坐等.在数列{an}中,an>0,且Sn=(an+1/an)/2,n∈N*,计算a1,a2,a3
在数列{an}中,a1=1,a2=2,an=an-1-an-2(n∈N*,n≥3),则a2010=______.