作业帮 > 数学 > 作业

积分证明f(x)在【a,b】上连续,且f(x)>0,求证:方程∫f(t)dt+∫dt/f(t)=0在(a,b)内有且仅有

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 09:08:14
积分证明
f(x)在【a,b】上连续,且f(x)>0,求证:方程∫f(t)dt+∫dt/f(t)=0在(a,b)内有且仅有一个实根.
积分证明f(x)在【a,b】上连续,且f(x)>0,求证:方程∫f(t)dt+∫dt/f(t)=0在(a,b)内有且仅有
记F(x)=∫f(t)dt+∫dt/f(t) 则F(a)=∫dt/f(t)0
F`(x)=f(x)+1/f(x)>0 所以 F(x) 在(a,b)严格递增 且F(a)0
由连续函数的介值定理知存在,严格单调性知唯一