已知数列{an}满足a1=2,sn=4a的n-1 +2(n=2,3,4,.)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 08:01:38
已知数列{an}满足a1=2,sn=4a的n-1 +2(n=2,3,4,.)
(1)证明数列{a的n-1 - 2a的n}成等比数列
(1)证明数列{a的n-1 - 2a的n}成等比数列
题还是很容易理解.
只是题貌似-2an打错,该是a(n-1)-2a(n-2)才对否则做不出.
已下为修正条件后
Sn=4a(n-1)+2,
S(n-1)=4a(n-2)+2
Sn-S(n-1)==4a(n-1)+2-[4a(n-2)+2]=4a(n-1)+4a(n-2)=an
2a(n-1)+4a(n-2)=2[a(n-1)-2a(n-2)]=an-2a(n-1)
[an-2a(n-1)]/[a(n-1)-2a(n-2)]=2
S2=4a1+2=a1+a2,a2=5
an-2a(n-1)=(a1+a2)*2^(n-1)=3*2^n
所以{a的n-1 - 2a的n-2}成等比数列.
只是题貌似-2an打错,该是a(n-1)-2a(n-2)才对否则做不出.
已下为修正条件后
Sn=4a(n-1)+2,
S(n-1)=4a(n-2)+2
Sn-S(n-1)==4a(n-1)+2-[4a(n-2)+2]=4a(n-1)+4a(n-2)=an
2a(n-1)+4a(n-2)=2[a(n-1)-2a(n-2)]=an-2a(n-1)
[an-2a(n-1)]/[a(n-1)-2a(n-2)]=2
S2=4a1+2=a1+a2,a2=5
an-2a(n-1)=(a1+a2)*2^(n-1)=3*2^n
所以{a的n-1 - 2a的n-2}成等比数列.
已知数列{an}满足a1=1,a(n+1)=3an+2,求数列{an}的前n项和Sn.
已知数列{an}满足an+1+an=4n-3 当a1=2时,求Sn
已知数列{an}a1=2前n项和为Sn 且满足Sn Sn-1=3an 求数列{an}的通项公式an
已知数列(An)满足A1=1 An+1=3An 数列(Bn)前n项和Sn=n*n+2n+1
高一数学题1、已知数列an满足a1=4/3,2-a(n+1)=12/(an+6),1/an的前n项和为Sn,求Sn
已知数列{An}的前n项和Sn满足S(n+1)=4An+2(n是正整数),A1=1.
已知数列an的前n项和为sn,且满足sn=n²an-n²(n-1),a1=1/2
已知数列{an}的前n项和满足a1=1/2,an=-Sn*S(n-1),(n大于或等于2),求an,Sn
已知数列an首相a1=3,通项an和前n项和SN之间满足2an=Sn*Sn-1(n大于等于2)
已知数列an满足a1+2a2+3a3+...+nan=n(n+1)*(n+2),则数列an的前n项和Sn=?
已知数列an满足a1=1,a(n+3)=3an,数列bn的前n项和Sn=n2+2n+1 ⑴求数列an,bn的通项公式 ⑵
已知数列{An}的首项A1=3,通项An与前n项Sn之间满足2An=Sn*Sn-1(n>2).n和n-1都是下标.求{A