四棱锥S-ABCD中,平面SAC与底面ABCD垂直,侧棱SA、SB、SC与底面成角均为45°,AD‖BC,且AB=BC=
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 11:42:12
四棱锥S-ABCD中,平面SAC与底面ABCD垂直,侧棱SA、SB、SC与底面成角均为45°,AD‖BC,且AB=BC=2AD
求证,四边形ABCD是直角梯形
求异面直线SB与CD所成角的余弦值
求证,四边形ABCD是直角梯形
求异面直线SB与CD所成角的余弦值
(1)作SO垂直于AC,垂足为O.
∵平面SAC⊥底面ABCD,SO在平面SAC内,平面SAC∩底面ABCD=AC
∴SO⊥底面ABCD,
又侧棱SA、SB、SC与底面成角均为45°,
∴∠SOA=∠SOB=∠SOC=45º,
△SOA≌△SOB≌△SOC,
OA=OB=OC
∴△ABC是以∠B为直角的直角三角形.
又AD‖BC,BC=2AD,
∴四边形ABCD是直角梯形.
(2)延长DA至E,使得AE=AD,连结SE,BE,OE,OD,
设AD=1,
在四边形EBCD中,EA=AD=(1/2)BC,AB⊥BC,ED‖BC,
在Rt△SOB中,∠SBO=45º,
由平面几何知识可知,BE=√5,SB=2,OE=√5,SB=√7,
由余弦定理可得,cos∠SBE=(√5)/10,
易知,EB‖DC,
∴异面直线SB与CD所成角就是直线SB与BE所成角即∠SBE,
因此,异面直线SB与CD所成角的余弦值为(√5)/10.
∵平面SAC⊥底面ABCD,SO在平面SAC内,平面SAC∩底面ABCD=AC
∴SO⊥底面ABCD,
又侧棱SA、SB、SC与底面成角均为45°,
∴∠SOA=∠SOB=∠SOC=45º,
△SOA≌△SOB≌△SOC,
OA=OB=OC
∴△ABC是以∠B为直角的直角三角形.
又AD‖BC,BC=2AD,
∴四边形ABCD是直角梯形.
(2)延长DA至E,使得AE=AD,连结SE,BE,OE,OD,
设AD=1,
在四边形EBCD中,EA=AD=(1/2)BC,AB⊥BC,ED‖BC,
在Rt△SOB中,∠SBO=45º,
由平面几何知识可知,BE=√5,SB=2,OE=√5,SB=√7,
由余弦定理可得,cos∠SBE=(√5)/10,
易知,EB‖DC,
∴异面直线SB与CD所成角就是直线SB与BE所成角即∠SBE,
因此,异面直线SB与CD所成角的余弦值为(√5)/10.
在四棱锥S—ABCD中,底面ABCD为直角梯形,AB垂直于AD和BC.侧棱SA垂直于底面ABCD,且SA=AB=BC=1
平面与平面垂直判定,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面ABCD,且SA=AB,点E为AB的中点,点
如图;四棱锥S-ABCD的底面ABCD为正方形,SA垂直平面ABCD,E是SC的中点,求证;平面EBD垂直平面SAC(请
如图,在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面ABCD,且SA=SB,点E为AB的中点,点F为SC的中点
四棱锥P-ABCD中,底面ABCD为梯形,AD//BC,AB=AD=1/2BC,角ABC=60°,平面PAB垂直平面AB
在四棱锥S-ABCD中,底面ABCD为平行四边形,SA垂直平面ABCD,SA=AB=2,AD=1,角BAD=120度,E
直线与平面的夹角在底面是直角梯形的四棱锥S-ABCD中,角ABC=90度,SA垂直于平面ABCD,SA=AB=BC=1,
如图,在四棱锥S-ABCD中,侧棱SA=SB=SC=SD,底面ABCD是菱形,AC与BD交于O点
四棱锥S-ABCD中、底面ABCD为平行四边形、侧面SBC垂直底面ABCD、已知角ABC为45度、SA=SB、求证SA=
一道立体几何证明题四棱锥P-ABCD中,底面ABCD为梯形,AB//CD,AB垂直与BC,PC垂直与AD,PA垂直与底面
在四棱锥S-ABCD中,底面ABCD是正方形,SA⊥平面ABCD,且SA=AB,点E为AB的中点,点F为SC的中点,求证
在底面是直角梯形的四棱锥S-ABCD中∠ABC=90°,SA⊥面ABCD,SA=AB=BC=1,AD=12,则面SCD与