设A(X1,y1)为椭圆X^2+2y^2=2上任意点,过做一条斜率为-(x/2y)的直线,又设D为远点到L的距离,R1,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 16:54:54
设A(X1,y1)为椭圆X^2+2y^2=2上任意点,过做一条斜率为-(x/2y)的直线,又设D为远点到L的距离,R1,R2 分别为点A到焦点的距离,求证根号R1R2.D为定直.
在双曲线Y^2/12-x^2/13=1的上支上有三点A(x1,y1),B(x2,6),c(x3,y3)它们与点F(0,)的距离成等差数列,(1)求Y1+Y2的直;(2)证明线段AC的垂直平分线经过魔一定点,并求此点做标.
在双曲线Y^2/12-x^2/13=1的上支上有三点A(x1,y1),B(x2,6),c(x3,y3)它们与点F(0,)的距离成等差数列,(1)求Y1+Y2的直;(2)证明线段AC的垂直平分线经过魔一定点,并求此点做标.
X^2+2y^2=2
则a=√2 b=1 c=1
离心率e=√2/2
直线的方程为
y=y1=-(x/2y)(x-x1)
整理得
2y^2-2y1y=-x^2+x1x
x1x+2y1y-2=0
D为远点到L的距离=2/√(x1^2+4y1^2)
而R1=a+ex1
R2=a-ex1
√R1R2*D=√(a^2-e^2x1^2)*(2/√(x1^2+4y1^2))
=√(2-1/2x1^2)*2/√(4-x1^2)
=√(4-x1^2)/2*2/√(4-x1^2)
=√2
所以为定值
则a=√2 b=1 c=1
离心率e=√2/2
直线的方程为
y=y1=-(x/2y)(x-x1)
整理得
2y^2-2y1y=-x^2+x1x
x1x+2y1y-2=0
D为远点到L的距离=2/√(x1^2+4y1^2)
而R1=a+ex1
R2=a-ex1
√R1R2*D=√(a^2-e^2x1^2)*(2/√(x1^2+4y1^2))
=√(2-1/2x1^2)*2/√(4-x1^2)
=√(4-x1^2)/2*2/√(4-x1^2)
=√2
所以为定值
设A(x1,y1),B(x2,y2)两点在抛物线y=2x^2上,l是AB的垂直平分线.当l的斜率为2时,求l在y轴上的截
过点P(2,0)且斜率为K的直线L交抛物线Y的平方=2x于M(x1,y1)N(x2,y2)两点
已知抛物线方程y=x²,直线l的方程为y=2x-2,设抛物线上一动点M到直线l的距离为d1,M到x轴的距离为d
已知椭圆x^2/2+y^2=1,设斜率为2的直线l与椭圆相交于不同的两点A,B,点Q(0,y0)在线段AB的垂直平分线上
抛物线y^2=8x的准线为l,点q在圆c:x^2+y^2++6x+8y+21=0上,设抛物线上任意一点p到直线l的距离为
设斜率为1的直线L经过抛物线y^2=4x的焦点,与抛物线相交于A(x1,y1);B(x2,y2)两点,则向量OA×向量O
设椭圆x 2/a 2+y 2/b 2=1(a>b>0)的右焦点F,斜率为1的直线过F,并交椭圆于A,B点,点O为坐标原点
已知斜率为1的直线l过椭圆x^2/4+y^2=1
1.设过点(根号2,2*根号2)的直线l的斜率为k,若圆x^2+y^2=4上恰有3点到直线l的距离等于1,则k等于___
过椭圆2x^2+y^2=2的一个上焦点的直线交椭圆于A、B两点,设此直线斜率为k,求A0B的面积S与k的函数关系式
设直线l过点(-2,0),且与圆x∧2+y∧2=1相切,则l的斜率为
一道椭圆的几何题.设F1,F2分别是椭圆E:X^2 Y^2/b^2=1的左右焦点,过F1斜率为1的直线L与E相交于A,B