求解一道较难的不等式证明题目
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 05:16:31
求解一道较难的不等式证明题目
x,y,z∈[0,1] 求证(1+x)(1+Y)(1+Z)>=√8(x+y)(y+z)(x+z)
x,y,z∈[0,1] 求证(1+x)(1+Y)(1+Z)>=√8(x+y)(y+z)(x+z)
(1+x)(1+y)-2(x+y)=1+xy+x+y-2(x+y)=1+xy-(x+y)
=1-x+y(x-1)=(1-x)(1-y)>=0 (因为x,y,z∈[0,1] )
所以(1+x)(1+y)>=2(x+y)
同理(1+x)(1+z)>=2(x+z)
(1+y)(1+z)>=2(y+z)
以上3式相乘
[(1+x)(1+Y)(1+Z)]^2>=8(x+y)(y+z)(x+z)
所以(1+x)(1+Y)(1+Z)>=√8(x+y)(y+z)(x+z)
=1-x+y(x-1)=(1-x)(1-y)>=0 (因为x,y,z∈[0,1] )
所以(1+x)(1+y)>=2(x+y)
同理(1+x)(1+z)>=2(x+z)
(1+y)(1+z)>=2(y+z)
以上3式相乘
[(1+x)(1+Y)(1+Z)]^2>=8(x+y)(y+z)(x+z)
所以(1+x)(1+Y)(1+Z)>=√8(x+y)(y+z)(x+z)