△ABC的两个顶点A,B为椭圆x^2+5y^2=5的左右焦点,且三内角ABC满足sin(B-A)/2=1/2cosC/2
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 01:00:39
△ABC的两个顶点A,B为椭圆x^2+5y^2=5的左右焦点,且三内角ABC满足sin(B-A)/2=1/2cosC/2 求顶点C的轨迹方程
.晕 是我算错了...还是真不存在.
那个是sin[(B-A)/2]
我算的两边之差等于第三边
.晕 是我算错了...还是真不存在.
那个是sin[(B-A)/2]
我算的两边之差等于第三边
(1)易知,A(-2,0),B(2,0).===>c=2.(2)sin[(B-A)/2]=1/2cosC/2===>2sin(B-A)=sinA+sinB.===>b-a=c/2.===>CA-CB=1.故点C的轨迹方程是60x^2-4y^2=15.(x>0).
还是一道有趣的数学题△ABC的两个顶点A,B分别为椭圆x²+5y²=5的两个焦点,且三内角A,B,C
已知A,B为椭圆x^2/4+y^2/3=1的左右两个顶点,F为椭圆的右焦点
已知A B为椭圆x^2/4+y^2/3=1的左右两个顶点 F为椭圆的右焦点,
已知△ABC的三个内角A、B、C满足A+C=2B,且1/cosA+1/cosC=-根号2/cosB,求cos[(A-c)
已知三角形ABC的顶点B,C在椭圆x^2/4+y^2/3=1上,顶点A是椭圆的一个焦点,且椭圆的另外一个焦点在BC边上,
已知三角形ABC的顶点B、C在椭圆x^2/3+y^2=1上,顶点A是椭圆的一个焦点,且椭圆另一个焦点在BC边上,则三角形
椭圆 x^2/a^2+y^2/b^2=1 的右顶点A到左右两个焦点F1,F2距离分别为8和2,
△√已知椭圆E:x^2/a^2+y^2/b^2=1(a>b>0)的一个顶点到其左右两个焦点F1,F2的距离分别为5和1,
已知A、B为椭圆(x^2)/4+(y^2)/3=1的左右两个顶点,F为椭圆饿右焦点,P为椭圆上异于A、B的任意一点,直线
已知椭圆C:X^2/a^2+y^2/b^2=1 (a>b>0)的上顶点为A,左右焦点为F1,F2,且椭圆过P(4/3,b
已知椭圆x^2/a^2+y^2/b^2=1的左右顶点为A,B,左右焦点为F1,F2,若|AF1|,|F1F2|,|F1B
已知三角形ABC的三个内角,满足A+B=2B,设x=cos(A-C)/2,f(x)=cosB(1/cosA+1/cosC