作业帮 > 数学 > 作业

求证sin(a/2)(sina+sin2a++sin3a+..+sinna)=sin(na/2)*sin[(n+1)a/

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 14:07:25
求证sin(a/2)(sina+sin2a++sin3a+..+sinna)=sin(na/2)*sin[(n+1)a/2]
求证sin(a/2)(sina+sin2a++sin3a+..+sinna)=sin(na/2)*sin[(n+1)a/
证明:
由积化和差公式:sinαsinβ=-1/2[cos(α+β)-cos(α-β)]得
sin(a/2)*sina = 1/2 * cos(3*a/2) - 1/2 * cos(a/2)
sin(a/2)*sin2*a = 1/2 * cos(5*a/2) - 1/2 * cos(3*a/2)
sin(a/2)*sin3*a = 1/2 * cos(7*a/2) - 1/2 * cos(5*a/2)
.
sin(a/2)*sinn*a = 1/2 * cos[(2*n-1)*a/2] - 1/2 * cos[(2*n-1)*a/2]
所以左边 = 1/2*cos[(2*n+1)*a/2] - 1/2*cos(a/2)
再由和差化积公式 cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]得
左边 = 1/2*cos[(2*n+1)*a/2] - 1/2*cos(a/2)
= sin(na/2)*sin[(n+1)a/2]