求证sin(a/2)(sina+sin2a++sin3a+..+sinna)=sin(na/2)*sin[(n+1)a/
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 14:07:25
求证sin(a/2)(sina+sin2a++sin3a+..+sinna)=sin(na/2)*sin[(n+1)a/2]
证明:
由积化和差公式:sinαsinβ=-1/2[cos(α+β)-cos(α-β)]得
sin(a/2)*sina = 1/2 * cos(3*a/2) - 1/2 * cos(a/2)
sin(a/2)*sin2*a = 1/2 * cos(5*a/2) - 1/2 * cos(3*a/2)
sin(a/2)*sin3*a = 1/2 * cos(7*a/2) - 1/2 * cos(5*a/2)
.
sin(a/2)*sinn*a = 1/2 * cos[(2*n-1)*a/2] - 1/2 * cos[(2*n-1)*a/2]
所以左边 = 1/2*cos[(2*n+1)*a/2] - 1/2*cos(a/2)
再由和差化积公式 cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]得
左边 = 1/2*cos[(2*n+1)*a/2] - 1/2*cos(a/2)
= sin(na/2)*sin[(n+1)a/2]
由积化和差公式:sinαsinβ=-1/2[cos(α+β)-cos(α-β)]得
sin(a/2)*sina = 1/2 * cos(3*a/2) - 1/2 * cos(a/2)
sin(a/2)*sin2*a = 1/2 * cos(5*a/2) - 1/2 * cos(3*a/2)
sin(a/2)*sin3*a = 1/2 * cos(7*a/2) - 1/2 * cos(5*a/2)
.
sin(a/2)*sinn*a = 1/2 * cos[(2*n-1)*a/2] - 1/2 * cos[(2*n-1)*a/2]
所以左边 = 1/2*cos[(2*n+1)*a/2] - 1/2*cos(a/2)
再由和差化积公式 cosθ-cosφ=-2sin[(θ+φ)/2]sin[(θ-φ)/2]得
左边 = 1/2*cos[(2*n+1)*a/2] - 1/2*cos(a/2)
= sin(na/2)*sin[(n+1)a/2]
求证:(1)sin3a=3sina-4sin^3a
(2sin^2a+sin2a)/(1+tana) 整理 =[2sina(sina+cosa)]/[(sina+cosa)
已知sina+sinβ=√3(cosβ-cosa),a,β∈(0,π/2).求证:sin3a+sin3β=0
数学极限求值:a是一个角度值 X=a(sina+sin2a+sin3a+sin4a+...+sinπ) 当a趋向无限小时
若2sin(π/4+a)=sinθ+cosθ,2sin^2β=sin2θ,求证sin2a+(1/2)cos2β=0.
若2sin(π/4+a)=sinθ+cosθ,2sin^2β=sin2θ,求证sin2a+(1/2)cos2β=0
已知(2sin^a+sin2a)/(1+tana)=k (0
k=(2sin^2a+sin2a)/(1+tana) 则sin(a-3.14/4)的值
已知cos(a+B)+1=0,求证sin(2a+B)+sinB=0?(提示:sin(-a)=-sina).
函数y=sinA+cosA-4sinAcosA+1,且2sin^A+sin2A/1+tanA=k,π/4
求证sin(2A+B)/sinA-2cos(A+B)=sinB/sinA
已知sin(3π+a)=2sin[(3π/2)+a],求sin^2a+sin2a的值