二重积分和三重积分的区别.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 11:42:01
二重积分和三重积分的区别.
分别用定积分,二重积分和三重积分三种方法计算旋转抛物面Z=x^2+y^2和平面Z=a^2所围成的空间区域Ω的体积.
搞不懂三重积分和二重积分投影下来的时候都是圆、为什么三重积分多个变量Z呢?我快疯了.就剩这点分了.麻烦帮下忙谢谢
分别用定积分,二重积分和三重积分三种方法计算旋转抛物面Z=x^2+y^2和平面Z=a^2所围成的空间区域Ω的体积.
搞不懂三重积分和二重积分投影下来的时候都是圆、为什么三重积分多个变量Z呢?我快疯了.就剩这点分了.麻烦帮下忙谢谢
都是递进关系,从一重积分开始,只说几何意义吧.
一重积分(定积分):只有一个自变量y = f(x)当被积函数为1时,就是直线的长度(自由度较大)∫(a→b) dx = L(直线长度)被积函数不为1时,就是图形的面积(规则)∫(a→b) f(x) dx = A(平面面积)另外,定积分也可以求规则的旋转体体积,分别是盘旋法(Disc Method):V = π∫(a→b) f²(x) dx圆壳法(Shell Method):V = 2π∫(a→b) xf(x) dx计算方法有换元积分法,极坐标法等,定积分接触得多,不详说了∫(α→β) (1/2)[A(θ)]² dθ = A(极坐标下的平面面积)
二重积分:有两个自变量z = f(x,y)当被积函数为1时,就是面积(自由度较大)∫(a→b) ∫(c→d) dxdy = A(平面面积)当被积函数不为1时,就是图形的体积(规则)、和旋转体体积∫(a→b) ∫(c→d) dxdy = V(旋转体体积)计算方法有直角坐标法、极坐标法、雅可比换元法等极坐标变换:{ x = rcosθ { y = rsinθ { α ≤ θ ≤ β、最大范围:0 ≤ θ ≤ 2π∫(α→β) ∫(h→k) f(rcosθ,rsinθ) r drdθ
三重积分:有三个自变量u = f(x,y,z)被积函数为1时,就是体积、旋转体体积(自由度最大)∫(a→b) ∫(c→d) ∫(e→f) dxdydz = V(旋转体体积)当被积函数不为1时,就没有几何意义了,有物理意义等计算方法有直角坐标法、柱坐标切片法、柱坐标投影法、球面坐标法、雅可比换元法等极坐标变化(柱坐标):{ x = rcosθ { y = rsinθ { z = z { h ≤ r ≤ k
{ α ≤ θ ≤ β、最大范围:0 ≤ θ ≤ 2π∫(α→β) ∫(h→k) ∫(z₁→z₂) f(rcosθ,rsinθ,z) r dzdrdθ极坐标变化(球坐标):{ x = rsinφcosθ { y = rsinφsinθ { z = rcosφ { h ≤ r ≤ k
{ a ≤ φ ≤ b、最大范围:0 ≤ φ ≤ π { α ≤ θ ≤ β、最大范围:0 ≤ θ ≤ 2π
∫(α→β) ∫(a→b) ∫(h→k) f(rsinφcosθ,rsinφsinθ,rcosφ) r²sin²φ drdφdθ
所以越上一级,能求得的空间范围也越自由,越广泛,但也越复杂,越棘手,而且限制比上面两个都少,对空间想象力提高了.重积分能化为几次定积分,每个定积分能控制不同的伸展方向.
又比如说,在a ≤ x ≤ b里由f(x)和g(x)围成的面积,其中f(x) > g(x)用定积分求的面积公式是∫(a→b) [f(x) - g(x)] dx但是升级的二重积分,面积公式就是∫(a→b) dx ∫(g(x)→f(x)) dx、被积函数变为1了
用不同积分层次计算由z = x² + y²、z = a²围成的体积?
一重积分(定积分):向zox面投影,得z = x²、令z = a² --> x = ± a、采用圆壳法V = 2πrh = 2π∫(0→a) xz dx = 2π∫(0→a) x³ dx = 2π • (1/4)[ x⁴ ] |(0→a) = πa⁴/2
二重积分:高为a、将z = x² + y²向xoy面投影得x² + y² = a²所以就是求∫∫(D) (x² + y²) dxdy、其中D是x² + y² = a²V = ∫∫(D) (x² + y²) dxdy = ∫(0→2π) dθ ∫(0→a) r³ dr、这步你会发觉步骤跟一重定积分一样的= 2π • (1/4)[ r⁴ ] |(0→a) = πa⁴/2
三重积分:旋转体体积,被积函数是1,直接求可以了柱坐标切片法:Dz:x² + y² = zV = ∫∫∫(Ω) dxdydz= ∫(0→a²) dz ∫∫Dz dxdy= ∫(0→a²) πz dz= π • [ z²/2 ] |(0→a²)= πa⁴/2柱坐标投影法:Dxy:x² + y² = a²V = ∫∫∫(Ω) dxdydz= ∫(0→2π) dθ ∫(0→a) r dr ∫(r²→a²) dz= 2π • ∫(0→a) r • (a² - r²) dr= 2π • [ a²r²/2 - (1/4)r⁴ ] |(0→a)= 2π • [ a⁴/2 - (1/4)a⁴ ]= πa⁴/2三重积分求体积时能用的方法较多,就是所说的高自由度.
既然都说了这麼多,再说一点吧:如果再学下去的话,你会发现求(平面)面积、体积 比 求(曲面)面积的公式容易学完求体积的公式,就会有求曲面的公式就是「曲线积分」和「曲面积分」,又分「第一类」和「第二类」
当被积函数为1时,第一类曲线积分就是求弧线的长度,对比定积分只能求直线长度∫(C) ds = L(曲线长度)被积函数不为1时,就是求以弧线为底线的曲面的面积∫(C) f(x,y) ds = A(曲面面积)
当被积函数为1时,第一类曲面积分就是求曲面的面积,对比二重积分只能求平面面积∫∫(Σ) dS = A(曲面面积)、自由度比第一类曲线积分大∫∫(Σ) f(x,y,z) dS,物理应用、例如曲面的质量、重心、转动惯量、流速场流过曲面的流量等
而第二类曲线积分/第二类曲面积分以物理应用为主要,而且是有"方向性"的,涉及向量范围了.这两个比较复杂,概念又深了一层,等你学到再理解吧.
一重积分(定积分):只有一个自变量y = f(x)当被积函数为1时,就是直线的长度(自由度较大)∫(a→b) dx = L(直线长度)被积函数不为1时,就是图形的面积(规则)∫(a→b) f(x) dx = A(平面面积)另外,定积分也可以求规则的旋转体体积,分别是盘旋法(Disc Method):V = π∫(a→b) f²(x) dx圆壳法(Shell Method):V = 2π∫(a→b) xf(x) dx计算方法有换元积分法,极坐标法等,定积分接触得多,不详说了∫(α→β) (1/2)[A(θ)]² dθ = A(极坐标下的平面面积)
二重积分:有两个自变量z = f(x,y)当被积函数为1时,就是面积(自由度较大)∫(a→b) ∫(c→d) dxdy = A(平面面积)当被积函数不为1时,就是图形的体积(规则)、和旋转体体积∫(a→b) ∫(c→d) dxdy = V(旋转体体积)计算方法有直角坐标法、极坐标法、雅可比换元法等极坐标变换:{ x = rcosθ { y = rsinθ { α ≤ θ ≤ β、最大范围:0 ≤ θ ≤ 2π∫(α→β) ∫(h→k) f(rcosθ,rsinθ) r drdθ
三重积分:有三个自变量u = f(x,y,z)被积函数为1时,就是体积、旋转体体积(自由度最大)∫(a→b) ∫(c→d) ∫(e→f) dxdydz = V(旋转体体积)当被积函数不为1时,就没有几何意义了,有物理意义等计算方法有直角坐标法、柱坐标切片法、柱坐标投影法、球面坐标法、雅可比换元法等极坐标变化(柱坐标):{ x = rcosθ { y = rsinθ { z = z { h ≤ r ≤ k
{ α ≤ θ ≤ β、最大范围:0 ≤ θ ≤ 2π∫(α→β) ∫(h→k) ∫(z₁→z₂) f(rcosθ,rsinθ,z) r dzdrdθ极坐标变化(球坐标):{ x = rsinφcosθ { y = rsinφsinθ { z = rcosφ { h ≤ r ≤ k
{ a ≤ φ ≤ b、最大范围:0 ≤ φ ≤ π { α ≤ θ ≤ β、最大范围:0 ≤ θ ≤ 2π
∫(α→β) ∫(a→b) ∫(h→k) f(rsinφcosθ,rsinφsinθ,rcosφ) r²sin²φ drdφdθ
所以越上一级,能求得的空间范围也越自由,越广泛,但也越复杂,越棘手,而且限制比上面两个都少,对空间想象力提高了.重积分能化为几次定积分,每个定积分能控制不同的伸展方向.
又比如说,在a ≤ x ≤ b里由f(x)和g(x)围成的面积,其中f(x) > g(x)用定积分求的面积公式是∫(a→b) [f(x) - g(x)] dx但是升级的二重积分,面积公式就是∫(a→b) dx ∫(g(x)→f(x)) dx、被积函数变为1了
用不同积分层次计算由z = x² + y²、z = a²围成的体积?
一重积分(定积分):向zox面投影,得z = x²、令z = a² --> x = ± a、采用圆壳法V = 2πrh = 2π∫(0→a) xz dx = 2π∫(0→a) x³ dx = 2π • (1/4)[ x⁴ ] |(0→a) = πa⁴/2
二重积分:高为a、将z = x² + y²向xoy面投影得x² + y² = a²所以就是求∫∫(D) (x² + y²) dxdy、其中D是x² + y² = a²V = ∫∫(D) (x² + y²) dxdy = ∫(0→2π) dθ ∫(0→a) r³ dr、这步你会发觉步骤跟一重定积分一样的= 2π • (1/4)[ r⁴ ] |(0→a) = πa⁴/2
三重积分:旋转体体积,被积函数是1,直接求可以了柱坐标切片法:Dz:x² + y² = zV = ∫∫∫(Ω) dxdydz= ∫(0→a²) dz ∫∫Dz dxdy= ∫(0→a²) πz dz= π • [ z²/2 ] |(0→a²)= πa⁴/2柱坐标投影法:Dxy:x² + y² = a²V = ∫∫∫(Ω) dxdydz= ∫(0→2π) dθ ∫(0→a) r dr ∫(r²→a²) dz= 2π • ∫(0→a) r • (a² - r²) dr= 2π • [ a²r²/2 - (1/4)r⁴ ] |(0→a)= 2π • [ a⁴/2 - (1/4)a⁴ ]= πa⁴/2三重积分求体积时能用的方法较多,就是所说的高自由度.
既然都说了这麼多,再说一点吧:如果再学下去的话,你会发现求(平面)面积、体积 比 求(曲面)面积的公式容易学完求体积的公式,就会有求曲面的公式就是「曲线积分」和「曲面积分」,又分「第一类」和「第二类」
当被积函数为1时,第一类曲线积分就是求弧线的长度,对比定积分只能求直线长度∫(C) ds = L(曲线长度)被积函数不为1时,就是求以弧线为底线的曲面的面积∫(C) f(x,y) ds = A(曲面面积)
当被积函数为1时,第一类曲面积分就是求曲面的面积,对比二重积分只能求平面面积∫∫(Σ) dS = A(曲面面积)、自由度比第一类曲线积分大∫∫(Σ) f(x,y,z) dS,物理应用、例如曲面的质量、重心、转动惯量、流速场流过曲面的流量等
而第二类曲线积分/第二类曲面积分以物理应用为主要,而且是有"方向性"的,涉及向量范围了.这两个比较复杂,概念又深了一层,等你学到再理解吧.
积分,二重积分,三重积分的几何意义
二重积分和三重积分的几何意义分别是什么
曲线积分和曲面积分的几何意义是什么,和二重积分三重积分有什么区别.如果∫后的式子为1,分别表示面积还是体积
考研数学一中,二重积分,三重积分和曲面积分大约占的比例
高等数学,球坐标系下矢量的二重积分和三重积分两个题目
二重积分,三重积分,第一型曲面积分
一元积分和二重积分的几何意义有什么区别?
求二重积分和三重积分对称性的解答,要理论结合例子,关键是要回答经典
三重积分投影法和截面法有什么区别
高数中曲面积分和三重积分之间的联系是什么?
积分的物理意义二重积分,三重积分,对曲线积分,对曲面积分……的物理意义,最好详细一点
重积分的应用 计算曲面的面积 配图 尽量使用三重或二重积分方法 暂不考虑曲