利用高斯公式的方法计算积分∫∫ x2y2dxdy,其中∑是球面x2+y2+z2=r2下部分下侧
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 19:35:01
利用高斯公式的方法计算积分∫∫ x2y2dxdy,其中∑是球面x2+y2+z2=r2下部分下侧
补平面Σ1:z=0,x²+y²≤r²,上侧,这样Σ+Σ1为一个封闭曲面
由高斯公式:
∫∫(Σ+Σ1) x²y² dxdy
=∫∫∫ 0 dxdydz
=0
下面计算所补平面的积分
∫∫(Σ1) x²y² dxdy
=∫∫(D) x²y² dxdy 其中积分区域D为x²+y²≤r²,下面用极坐标
=∫∫ ρ^5cos²θsin²θ dρdθ
=∫[0→2π] cos²θsin²θdθ ∫[0→r] ρ^5dρ
=(1/4)∫[0→2π] sin²2θ dθ×(1/6)ρ^6 |[0→r]
=(1/24)r^6∫[0→2π] sin²2θ dθ
=(1/48)r^6∫[0→2π] (1-cos4θ) dθ
=(1/48)r^6[θ - (1/4)sin4θ] |[0→2π]
=(1/24)πr^6
最后两个积分相减得:
原式=0-(1/24)πr^6=-(1/24)πr^6
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
由高斯公式:
∫∫(Σ+Σ1) x²y² dxdy
=∫∫∫ 0 dxdydz
=0
下面计算所补平面的积分
∫∫(Σ1) x²y² dxdy
=∫∫(D) x²y² dxdy 其中积分区域D为x²+y²≤r²,下面用极坐标
=∫∫ ρ^5cos²θsin²θ dρdθ
=∫[0→2π] cos²θsin²θdθ ∫[0→r] ρ^5dρ
=(1/4)∫[0→2π] sin²2θ dθ×(1/6)ρ^6 |[0→r]
=(1/24)r^6∫[0→2π] sin²2θ dθ
=(1/48)r^6∫[0→2π] (1-cos4θ) dθ
=(1/48)r^6[θ - (1/4)sin4θ] |[0→2π]
=(1/24)πr^6
最后两个积分相减得:
原式=0-(1/24)πr^6=-(1/24)πr^6
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.
利用球坐标求积分x2+y2+z2,其中区域是锥面z=x2+y2开根号与球面x2+y2+z2=r2所
一道曲线积分题.求∫c (x2+y2) ds,其中C是x2+y2+z2=R2与x+y+z=0的交线
利用高斯公式计算曲面积分(如图),其中∑为球面x^2+y^2+z^2=a^2的外侧
高数题,曲线积分若曲线L为球面x2+y2+z2=a2被平面x+y+z=0所截得的圆周,则第一类曲线积分∫L(x2+y2+
利用高斯公式计算曲面积分∑xdydz+ydzdx+zdxdy,其中∑为球面(x-a)^2+(y-b) ^2+(z-c)
计算I=∫∫1/(x2+y2+z2)dS,S是抛物面z=x2+y2与平面z=1所围立体的外表面
利用高斯公式的方法计算积分∫∫(x+y)dydz+(y+z)dzdx+(z+x)dxdy,
∫(y+1)dx+(z+2)dy+(x+3)dz,L是球面x2+y2+z2=a2与平面x+y+z=0的交线,从x抽正向看
高数三重积分利用球面坐标计算三重积分Ω根号下x^2+y^2+z^2dv其中Ω是由锥面z=根号x^2+y^2 及球面x^2
利用高斯公式计算曲面积分∫∫xdydz+z^2dxdy/(x^2+y^2+z^2),其中曲面∑是由x^2+y^2=R^2
利用高斯公式计算曲面积分
利用高斯公式求曲面积分∮xy^2dydz+yz^2dzdx+zx^2dxdy,其中∑为球面x^2+y^2+z^2=R^2