已知一次函数y=-x-2的图像与反比例函数y=k/x.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 02:02:41
已知一次函数y=-x-2的图像与反比例函数y=k/x.
已知一次函数y=-x-2的图像与反比例函数y=k/x的图像相交于A、B两点,其中A点横坐标和B点纵坐标都是2.
1.求这个反比例函数的解析式
2.求△AOB的面积
3.在y轴是否存在一点P使OAP为等腰三角形(OA不为底边) 若存在,求出点P的坐标,若不存在,请说明理由
在线40分钟等待 其中第3问要更更更更详细解答,上课没听懂
已知一次函数y=-x-2的图像与反比例函数y=k/x的图像相交于A、B两点,其中A点横坐标和B点纵坐标都是2.
1.求这个反比例函数的解析式
2.求△AOB的面积
3.在y轴是否存在一点P使OAP为等腰三角形(OA不为底边) 若存在,求出点P的坐标,若不存在,请说明理由
在线40分钟等待 其中第3问要更更更更详细解答,上课没听懂
(1)设A(2,a) B(b,2),分别代入一次函数解析式 y=-x-2 中,得:
a = — 4 ,B = — 4,即A(2,—4),B(—4,2)
代入反比例函数解析式 y=k/x 中,即可求得 k = — 8
即反比例函数解析式为 y = — 8 / x
(2) 令直线AB(即一次函数y= -x-2)与 y 轴交点为点C,则:OC = 2
S△AOB = S△COB + S△COA
而 S△COB = 4 (以OE作底边,高就为B点的横坐标的绝对值)
S△COA = 2(以OE作底边,高就为A点的横坐标的绝对值)
即 S△AOB = 6
(3)假设存在P点,因为P点在 y 轴上,可设 P(0,x)
△OAP为等腰三角形,OA不为底边
能作底边的可能是OP或AP
当OP做底边时:AP = OA
OP = A点纵坐标绝对值的2倍= 8
即P点坐标为(0,—8)
当AP作底边时:OP = OA = 2√5
即P点坐标为 (0,—2√5)
综上所述:
在y轴存在一点P(0,—8)或(0,—2√5)使OAP为等腰三角形(OA不为底边)
a = — 4 ,B = — 4,即A(2,—4),B(—4,2)
代入反比例函数解析式 y=k/x 中,即可求得 k = — 8
即反比例函数解析式为 y = — 8 / x
(2) 令直线AB(即一次函数y= -x-2)与 y 轴交点为点C,则:OC = 2
S△AOB = S△COB + S△COA
而 S△COB = 4 (以OE作底边,高就为B点的横坐标的绝对值)
S△COA = 2(以OE作底边,高就为A点的横坐标的绝对值)
即 S△AOB = 6
(3)假设存在P点,因为P点在 y 轴上,可设 P(0,x)
△OAP为等腰三角形,OA不为底边
能作底边的可能是OP或AP
当OP做底边时:AP = OA
OP = A点纵坐标绝对值的2倍= 8
即P点坐标为(0,—8)
当AP作底边时:OP = OA = 2√5
即P点坐标为 (0,—2√5)
综上所述:
在y轴存在一点P(0,—8)或(0,—2√5)使OAP为等腰三角形(OA不为底边)
已知:一次函数y=-x+k的图像与反比例函数y=k-1/x的图像都经过点A(2,m),且一次函数y=-x+k的图像与x轴
已知一次函数y=2x-k的图像与反比例函数y=(k+5)/x的图像有一个交点的纵坐标是-4,求
已知一次函数Y=X+2与反比例函数Y=K/X,其中一次函数Y=X+2的图像经过P(K,5),试确定反比例函数的表达式
已知反比例函数Y=K-X 与一次函数Y=KX+b的图像交于(2,1) 两函数图像的另一个坐标轴
已知反比例函数y=k/x(k≠0)和一次函数y=x-6.1.若一次函数与反比例函数的图像交于点p(2,m),求m和k的值
初二反比例函数题!已知反比例函数y=x分之k+5的图像与一次函数y=2x-k的图像相交,其中一个交点的纵坐标为-4,则k
已知一次函数y=2x-k的图象与反比例函数y=k+5x
已知一次函数y=3x-2k的图象与反比例函数y=k−3x
已知反比例函数y=x分之k 的图像与一次函数y=kx+m的图像相交於点(2,1)
已知反比例函数y=k/x的图像与一次函数y=kx+m的图像交于A(2,1)
已知反比例函数y=k/x的图像与一次函数y=kx+m的图像相交于点A(2,1),B(a,-4).
已知反比例函数y=k/x的图像与一次函数y=kx+m的图像交于点(2,1)