作业帮 > 数学 > 作业

如图,在Rt△ABC中,∠B=90°,它的内切圆分别与边BC、CA、AB相切于点D、E、F,连接AD与内切圆相交于另一点

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 13:39:51
如图,在Rt△ABC中,∠B=90°,它的内切圆分别与边BC、CA、AB相切于点D、E、F,连接AD与内切圆相交于另一点P,连接PC、PE、PF、FD,且PC⊥PF.
求证:(1)△PFD∽△PDC;(2)
EP
DE
如图,在Rt△ABC中,∠B=90°,它的内切圆分别与边BC、CA、AB相切于点D、E、F,连接AD与内切圆相交于另一点
(1)∵BC与圆相切,
∴∠PFD=∠PDC.
∵BF、BD分别于圆相切,
∴∠BFD=∠BDF=45°.
∴∠FPD=45°.
∵PC⊥PF,
∴∠FPD=∠DPC.
∴△PFD∽△PDC.
(2)∵AE、AF与圆相切,
∴∠AFP=∠ADF,∠AEP=∠ADE,
∵∠FAD=∠PAF,∠EAP=∠DAE,
∴△AFP∽△ADF,△AEP∽△ADE,

AF
AD=
PF
FD、
AE
AD=
PE
ED且AE=AF,

PF
FD=
PE
ED.
∵△PFD∽△PDC,

PF
FD=
PD
DC.

EP
DE=
PD
DC.