f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[e^(n+1)+2]^
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 23:26:07
f(x)=e^x-kx,设函数F(x)=f(x)+f(-x),求证F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数
F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数
网上偶遇解答如下:
首先F(x)=e^x+e^-x
则F(k)*F(n-k+1)=[e^k+e^-k]*[e^(n-k+1)+e^-(n-k+1)]
=e^(n+1) + e^-(n+1) + e^(n-2k+1) + e^-(n-2k+1) (由于 e^(n-2k+1),e^-(n-2k+1)都大于0)
则上式>e^(n+1) + e^-(n+1)+2>e^(n+1)+2 (均值不等式,等号取不到)
F(1)F(2)……F(n)倒序相乘(联想等差的倒序相加)
即
F(1)F(2)……F(n)
F(n)F(n-1)……F(1)
上下俩俩对应相乘
有[F(1)F(2)……F(n)]^2>[e^(n+1)+2 ]^n 即F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2)
我想知道最后那个倒序相乘的结论是怎么的出的?为什么两组数倒序相乘,就能够得到大于F(k)*F(n-k+1)的值的n/2次方?
F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2).n为正整数
网上偶遇解答如下:
首先F(x)=e^x+e^-x
则F(k)*F(n-k+1)=[e^k+e^-k]*[e^(n-k+1)+e^-(n-k+1)]
=e^(n+1) + e^-(n+1) + e^(n-2k+1) + e^-(n-2k+1) (由于 e^(n-2k+1),e^-(n-2k+1)都大于0)
则上式>e^(n+1) + e^-(n+1)+2>e^(n+1)+2 (均值不等式,等号取不到)
F(1)F(2)……F(n)倒序相乘(联想等差的倒序相加)
即
F(1)F(2)……F(n)
F(n)F(n-1)……F(1)
上下俩俩对应相乘
有[F(1)F(2)……F(n)]^2>[e^(n+1)+2 ]^n 即F(1)F(2)……F(n)>[e^(n+1)+2]^(n/2)
我想知道最后那个倒序相乘的结论是怎么的出的?为什么两组数倒序相乘,就能够得到大于F(k)*F(n-k+1)的值的n/2次方?
F(1) F(n) >e^(n+1)+2
F(2) F(n-1) >e^(n+1)+2
F(3) F(n-2)>e^(n+1)+2
...
F(n-1) F(2)>e^(n+1)+2
F(n) F(1)>e^(n+1)+2
你再看竖排就一目了然了.
F(2) F(n-1) >e^(n+1)+2
F(3) F(n-2)>e^(n+1)+2
...
F(n-1) F(2)>e^(n+1)+2
F(n) F(1)>e^(n+1)+2
你再看竖排就一目了然了.
设函数f(x)满足f(x)+2f(1/x)=x,求f(x)
设函数f x=e^2x-2x,lim f'(x)/e^x -1等于 ,x→0
设函数f(x)满足f(x+1)=2f(x)+x/2(x∈N+)且f(1)=2,则f(20)=
1.已知,f(x)=x^2/(1+x^2),求f(1)+f(1/2)+f(3)+f(1/3)+……+f(n)+f(1/n
设f(x)=x(x+1)(x+2)…(x+n) f(x)的n+1阶导数
设函数f(x)在x=2的某领域内可微,且f'(x)=e^f(x),f(2)=1,求f'''(2)
函数导数1、设函数f(x)=[(e^x)-1)][(e^2x)-2][(e^3x)-3],则f'(0)是?2、设f(x)
设f(x)=2^x/(2^x+根号2),求f(1/n)+f(2/n)+f(3/n)+.+f(n/n)(n为自然数)
设f(x)=1/(2^x+√2),计算f(0)+f(1),f(-1)+f(-2)的值,猜想f(-n)+f(n+1)=
设函数f(x)满足关系式f(1+x)-2f(1-x)=3e^x,求函数f(x)?
设函数f(x)二阶可导,f'(x)是f'(x)+2f(x)+e^x的一个原函数,且f(0)=0.f'(0)=1求f(x)
f(x)=e^x/x,求∫f'(x)dx/1+f^2(x)?