若a,b,c为实数关于x的方程2x2+2(a-c)x+(a-b)2+(b-c)2=0有实数根,求证:a+c=2b.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 04:59:21
若a,b,c为实数关于x的方程2x2+2(a-c)x+(a-b)2+(b-c)2=0有实数根,求证:a+c=2b.
证明∵关于x的方程2x2+2(a-c)x+(a-b)2+(b-c)2=0有实数根,
∴△=[2(a-c)]2-4×2×[(a-b)2+(b-c)2]≥0,
4(a-c)2-8[(a-b)2+(b-c)2]≥0,
(a-c)2-2[(a-b)2+(b-c)2]≥0,
[(a-b)+(b-c)]2-2(a-b)2-2(b-c)2≥0,
(a-b)2+2(a-b)(b-c)+(b-c)2-2(a-b)2-2(b-c)2≥0,
-(a-b)2+2(a-b)(b-c)-(b-c)2≥0,
-[(a-b)-(b-c)]2≥0,
∴(a-b)-(b-c)=0,
a-b-b+c=0,
∴a+c=2b.
∴△=[2(a-c)]2-4×2×[(a-b)2+(b-c)2]≥0,
4(a-c)2-8[(a-b)2+(b-c)2]≥0,
(a-c)2-2[(a-b)2+(b-c)2]≥0,
[(a-b)+(b-c)]2-2(a-b)2-2(b-c)2≥0,
(a-b)2+2(a-b)(b-c)+(b-c)2-2(a-b)2-2(b-c)2≥0,
-(a-b)2+2(a-b)(b-c)-(b-c)2≥0,
-[(a-b)-(b-c)]2≥0,
∴(a-b)-(b-c)=0,
a-b-b+c=0,
∴a+c=2b.
若a,b,c为实数,关于x的方程2x2+2(a-c)x+(a-b)2+(b-c)2=0有两个相等的实数根,求证:a+c=
若abc为实数,关于x的方程2x2+2(a-c)x+(a-b)2+(b-c)2=0有两个相等的实数根.求证:a+c=2b
已知:关于x的一元二次方程(b-c)x2+(c-a)x+a-b=0有两个相等的实数根.求证:2b=a+c.
若a,b,c均为实数,方程2x^2+2(a-c)x+(a-b)^2+(b-c)^2=0有两个相等的实数根,求证:a+c=
已知a,b,c为正数,关于x的一元二次方程ax2+bx+c=0有两个相等的实数根.则方程(a+1)x2+(b+2)x+c
已知a,b,c是△ABC的三条边长,且关于x的方程(c-b)x2+2(b-a)x+(a-b)=0有两个相等的实数根,那么
已知:(b-c)x的平方+(c-a)x+(a-b)=0有俩个相等的实数根,求证:2b=a+c
设a.b.c是互不相等的实数,且方程(b-c)x^2+(c-a)x+(a-b)=0有两个实数根,证明2b=a+c
已知非零向量a,b,c满足a⊥b,x1,x2是方程x*2+bx+c(x为实数)两根,求证x1=x2
已知a,b,c为△ABC的三边,且关于x的方程(c-b)x平方+2(b-a)x+(a-b)=0有两个相等的实数根
等腰△ABC的三边分别为a、b、c,其中a=5,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,则△AB
在等腰△ABC中,三边分别为a、b、c,其中a=3,若关于x的方程x2+(b+2)x+6-b=0有两个相等的实数根,求△