斜率为1的直线l与椭圆x^2/4+y^2=1相交于A,B两点,则AB最大值是多少
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 02:56:07
斜率为1的直线l与椭圆x^2/4+y^2=1相交于A,B两点,则AB最大值是多少
let A(x1,y1),B(x2,y2)
let equation of the line l be
y= x+c ( c is a constant) (1)
sub (1) into ellipse
x^2/4 + (x+c)^2= 1
5x^2+ 8cx + 4(c^2-1) =0
x1+x2 = -8c/5 (3)
x1x2= 4(c^2-1)/5 (4)
Similarly
(y-c)^2/4 + y^2 = 1
5y^2 - 2cy +(c^2-4) =0
y1+y2 = 2c/5 (5)
y1y2 = (c^2-4)/5 (6)
|AB|^2
=(x1-x2)^2+(y1-y2)^2
= (x1+x2)^2-4x1x2 +(y1+y2)^2 - 4y1y2
= (-8c/5)^2 - 16(c^2-1)/5 + (2c/5)^2 - 4(c^2-4)/5
= (1/5)(14c^2 - 16(c^2-1) - 4(c^2-4))
= (1/5)( 32-7c^2)
(|AB|^2)'
= (1/5)(-14c)
(|AB|^2)' =0
=> c=0
(|AB|^2)'' max |AB| at c=0
ie y =x
x^2/4+x^2 =1
x^2 = 4/5
x = 2√5/5 or -2√5/5
when x = 2√5/5 ,y = 2√5/5
when x = -2√5/5 ,y = -2√5/5
max |AB| = √ (32/5) = 4√10/5
let equation of the line l be
y= x+c ( c is a constant) (1)
sub (1) into ellipse
x^2/4 + (x+c)^2= 1
5x^2+ 8cx + 4(c^2-1) =0
x1+x2 = -8c/5 (3)
x1x2= 4(c^2-1)/5 (4)
Similarly
(y-c)^2/4 + y^2 = 1
5y^2 - 2cy +(c^2-4) =0
y1+y2 = 2c/5 (5)
y1y2 = (c^2-4)/5 (6)
|AB|^2
=(x1-x2)^2+(y1-y2)^2
= (x1+x2)^2-4x1x2 +(y1+y2)^2 - 4y1y2
= (-8c/5)^2 - 16(c^2-1)/5 + (2c/5)^2 - 4(c^2-4)/5
= (1/5)(14c^2 - 16(c^2-1) - 4(c^2-4))
= (1/5)( 32-7c^2)
(|AB|^2)'
= (1/5)(-14c)
(|AB|^2)' =0
=> c=0
(|AB|^2)'' max |AB| at c=0
ie y =x
x^2/4+x^2 =1
x^2 = 4/5
x = 2√5/5 or -2√5/5
when x = 2√5/5 ,y = 2√5/5
when x = -2√5/5 ,y = -2√5/5
max |AB| = √ (32/5) = 4√10/5
若斜率为1直线l与椭圆x^2/4+y^2=1相交于A B两点,求AB的中点的轨迹方程.
斜率为1的直线与抛物线y^2=2x 相交于A,B 两点 若 |AB|=4 则 直线l的方程为
已知斜率为1的直线 l 与椭圆x^2/4+y^2=1相交于A,B两点,原点O在以AB为直径的圆上,求直线AB的方程
椭圆G:x^2/32+y^2/16=1,设斜率为k(k≠0)的直线l与椭圆G相交于不同的两点A,B,Q为AB的中点,
已知椭圆x^2/2+y^2=1,设斜率为2的直线l与椭圆相交于不同的两点A,B,点Q(0,y0)在线段AB的垂直平分线上
直线与椭圆的关系若斜率为1直线l与椭圆x^2/4+y^2=1相交于A B亮点,求AB的中点的轨迹方程.椭圆mx^2+ny
已知斜率为2的直线L与抛物线y^2=4x相交于A B两点 若|AB|=5 求L的方程
已知斜率为2的直线L与抛物线y^2=4x相交于A B两点 若AB=5 求L的方程
已知直线y=-x+1与椭圆 相交于A、B两点,且线段AB的中点在直线L:x-2y=0上,则此椭圆的离心率为_______
直线x-y+m=0与椭圆x^2+4y^2=4相交于A,B两点,求|AB|的最大值,3道椭圆的~
斜率为1的直线经过抛物线y^2=4x的焦点,且与抛物线相交于A,B两点,则绝对值AB等于____
一直抛物线C:y^2=4x 点M(1,0)过M的直线l与C相交于A B两点 直线l的斜率为1 求以AB为直径的圆的方程