设无穷等差数列{an}的前n项和为Sn,(1)若首项a1=3/2,公差d=1,求满足Sk²=(Sk)²
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 06:38:23
设无穷等差数列{an}的前n项和为Sn,(1)若首项a1=3/2,公差d=1,求满足Sk²=(Sk)²的正整数k,
(2)求所有的无穷等差数列{an},使得对于一切正整数k都有Sk²=(Sk)²成立
(2)求所有的无穷等差数列{an},使得对于一切正整数k都有Sk²=(Sk)²成立
sk=a1k+k(k-1)d/2=3k/2+k(k-1)/2=k(k+2)/2
sk^2=k^2(k^2+2)/2=(sk)^2=k^2(k+2)^2/4
2(k^2+2)=k^2+4k+4
k^2=4k
k=4
再问: (2)?
再答: sk=a1k+k(k-1)d/2=k[a1+d(k-1)/2] sk^2=k^2[a1+d(k^2-1)/2]=(sk)^2=k^2[a1+d(k-1)/2]^2 a1+d(k^2-1)/2=a1^2+a1d(k-1)+d^2(k-1)^2/4 k=1 a1=a1^2, a1=0 or 1 k=2, 3d/2=a1d+d^2/4, d=0 or 6-4a1 a1=0, d=0 or 6 a1=1, d=0 or 2 d=0,为常数序列,a1=0,or 1 都满足。 d=2, a1=1, Sk=k^2, 也满足 d=6,a1=0, an=6(n-1), sn=3(n-1)n, sn^2=3n^2(n-1)^2, s(n^2)=3n^2(n^2-1),两者不等。 因此只有上面三种情况
sk^2=k^2(k^2+2)/2=(sk)^2=k^2(k+2)^2/4
2(k^2+2)=k^2+4k+4
k^2=4k
k=4
再问: (2)?
再答: sk=a1k+k(k-1)d/2=k[a1+d(k-1)/2] sk^2=k^2[a1+d(k^2-1)/2]=(sk)^2=k^2[a1+d(k-1)/2]^2 a1+d(k^2-1)/2=a1^2+a1d(k-1)+d^2(k-1)^2/4 k=1 a1=a1^2, a1=0 or 1 k=2, 3d/2=a1d+d^2/4, d=0 or 6-4a1 a1=0, d=0 or 6 a1=1, d=0 or 2 d=0,为常数序列,a1=0,or 1 都满足。 d=2, a1=1, Sk=k^2, 也满足 d=6,a1=0, an=6(n-1), sn=3(n-1)n, sn^2=3n^2(n-1)^2, s(n^2)=3n^2(n^2-1),两者不等。 因此只有上面三种情况
设无穷等差数列{an}的前n项和为Sn,(1)若首项a1=3/2,公差d=1,求满足Sk²=(Sk)²
设无穷等差数列An的前n项和为Sn,若首项a1=3/2,公差d=1,求满足S(k的平方)=(Sk)的平方的正整数k
设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,Sk+1-Sk=24,求K=多少?
设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,Sk+2-Sk=24,则k=( )
设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,Sk+2-Sk=24,则k=?
设无穷等差数列{an}的前n项和为Sn.(Ⅰ)若首项a1=-4,公差d=2,求满足S(k^2)=(Sk)^2 的正整数k
设Sn为等差数列{an}的前n项和,若a1=2,公差d=2,Sk+2-Sk=26
,(苏2004)设无穷等差数列{an}的前n项和为sn.(Ⅰ)若首项a1=3/2,公差d=1,求满足 的
设Sn为等差数列{an}的前n项和,若a1=1,a3=5,Sk+2-Sk=36,则K的值为
设Sn为等差数列{an}的前n项和,若a1=1,公差d=2,Sn+2-Sn=36,则n=( )
设公差为d的等差数列{an}的前n项和为Sn,若a1=1,-2/17
首项为3,公差为2的等差数列,Sk为前K项的和求S=1/S1+1/S2+...+1/Sn的和