证明下列等式成立:(1)cos(x+2/π)=-sinx (2)sin(π-x)=sinx
证明等式:[cos(3x)-sin(3x)]/(cosx+sinx)=1-2sin(2x).成立
证明成立:[cos(3x)-sin(3x)]/(cosx+sinx)=1-2sin(2x).
证明x∈(0,π/2),cos(cosx)>sin(sinx)
证明 [sin(2x+y)/sinx]-2cos(x+y)=siny/sinx
怎么证明(1/2)sinx=sin(x/2)cos(x/2)
f(x)=2cos*sin(x+π/3)-^3sin^2x+sinx*cosx
sinx+cosx/sinx-cosx=2 求sinx/cos^3x +cosx/sin^3x
(sinX+sinθ) .(Sinx-sinθ)=sin(x+θ).cos(x-θ)证明
证明定积分(0到π/2)sin^3x/(sinx+cosx)dx=定积分(0到π/2)cos^3x/(sinx+cosx
1、sin(2x+B)/sinx - 2cos(x+B)=sinB/sinx
sin(x+y)-sinx=2cos(x+1/2y)sin(1/2y)的详细证明步骤.
请问,如何证明sinx+siny=2*sin(x+y/2)*cos(x-y/2)