以知点P(a,b)是圆x2+y2-2x+4y-20=0上的点,则a2+b2=?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 17:45:32
以知点P(a,b)是圆x2+y2-2x+4y-20=0上的点,则a2+b2=?
以知圆的方程为x2+y2=9,求过点A(1,2)的圆的弦的中点P的轨迹.
以知圆的方程为x2+y2=9,求过点A(1,2)的圆的弦的中点P的轨迹.
1.已经点P(a,b)是圆x2+y2-2x+4y-20=0上的点,则a2+b2=?
x2+y2-2x+4y-20=0,
故:x2+y2 = 2x -4y +20 = 2(x - 2y) + 20
设函数f(x,y) = x - 2y,只要求得:f(x,y)在圆x2+y2-2x+4y-20=0上有取值范围,就可求得:x2 + y2的值了.
直线L1:x - 2y =0的斜率为:k1= 1/2
又圆的圆心为:(1,-2)
故:过圆心,且垂直于直线L1:x - 2y =0的直线L2方程为:y = -2x.
可求得直线L2:y = -2x与圆的交点为:(1 +√5,-2 -2√5),或(1 -√5,-2 +2√5).
故:函数f(x,y) = x - 2y的取值范围的两个最值点为:
f1(x,y)= x - 2y = 1 +√5 - 2( -2 -2√5)=5 + 5√5,
f2(x,y)= x - 2y = 1 -√5 - 2( -2 +2√5)=5 - 5√5,
故:5 - 5√5≤f(x,y)≤5 + 5√5
又:x2+y2= 2f(x,y) +20
故:30 - 10√5≤x2+y2 ≤ 30 + 10√5
故:当点P(a,b)是圆x2+y2-2x+4y-20=0上的点时,
30 - 10√5≤a2+b2 ≤ 30 + 10√5
2.已经圆的方程为x2+y2=9,求过点A(1,2)的圆的弦的中点P的轨迹.
设P为弦的中点,
则:AP⊥OP
∴AP^2+OP^2=AO^2
即:(x-1)^2+(y-2)^2+x^2+y^2 = 5
∴P轨迹 2x^2-2x+2y^2-4y=0
x2+y2-2x+4y-20=0,
故:x2+y2 = 2x -4y +20 = 2(x - 2y) + 20
设函数f(x,y) = x - 2y,只要求得:f(x,y)在圆x2+y2-2x+4y-20=0上有取值范围,就可求得:x2 + y2的值了.
直线L1:x - 2y =0的斜率为:k1= 1/2
又圆的圆心为:(1,-2)
故:过圆心,且垂直于直线L1:x - 2y =0的直线L2方程为:y = -2x.
可求得直线L2:y = -2x与圆的交点为:(1 +√5,-2 -2√5),或(1 -√5,-2 +2√5).
故:函数f(x,y) = x - 2y的取值范围的两个最值点为:
f1(x,y)= x - 2y = 1 +√5 - 2( -2 -2√5)=5 + 5√5,
f2(x,y)= x - 2y = 1 -√5 - 2( -2 +2√5)=5 - 5√5,
故:5 - 5√5≤f(x,y)≤5 + 5√5
又:x2+y2= 2f(x,y) +20
故:30 - 10√5≤x2+y2 ≤ 30 + 10√5
故:当点P(a,b)是圆x2+y2-2x+4y-20=0上的点时,
30 - 10√5≤a2+b2 ≤ 30 + 10√5
2.已经圆的方程为x2+y2=9,求过点A(1,2)的圆的弦的中点P的轨迹.
设P为弦的中点,
则:AP⊥OP
∴AP^2+OP^2=AO^2
即:(x-1)^2+(y-2)^2+x^2+y^2 = 5
∴P轨迹 2x^2-2x+2y^2-4y=0
已知圆x2+y2-2x+4y-20=0上一点P(a,b),则a2+b2的最小值是 ___ .
在平面直角坐标系XOY中,点p(x,y)是椭圆 x2 a2 + y2 b2 =1(a>b>0)上的一个动点,则bx+ay
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的焦点在X轴上,过点P(-8,-2)作圆X^2+Y^2=16的切线,
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的焦点在X轴上,过点P(-8,-2)作圆X^2+Y^2=16的切 线
已知F1,F2是椭圆C:x2/a2+y2/b2=1(a〉b〉0)的左,右焦点,点P在椭圆C上,线段PF2与圆x2+y2=
椭圆C1:x2/a2+y2/b2=1(a>b>0)的左右顶点分别为A、B.点P是双曲线C2:x2/a2-y2/b2=1在
已知椭圆M:x2/a2+y2/b2=1(a>b>0)圆F:(x+c)2+y2=(a-c)2,c为椭圆的半焦距.过点p(a
点p是椭圆 x2/a2+y2/b2=1上一动点,A、B是椭圆上关于原点对称的两个点,如何推导出kPA*kPB=- b2/
已知点P(1,4)在圆C:x2+y2+2ax-4y+b=0上,点P关于直线x+y-3=0的对称点也在圆C上,则a=___
点P(X,Y)是圆X2+Y2=2Y上的动点,若x+y+a≥0恒成立,求a范围
【高中数学】圆x2+y2-2x+4y+1=0上任意点P(x,y)中x2+y2的最大值是———?
设椭圆x2/a2+y2/b2=1(a>b>0)的左`,右焦点分别为F1,F2,若直线x=a2/c上存在点P,使PF1的中