作业帮 > 数学 > 作业

当-π/2≤x≤π/2时,求函数f(x)=sinx+√3cosx的值域.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 07:51:11
当-π/2≤x≤π/2时,求函数f(x)=sinx+√3cosx的值域.
请问我这么做有问题吗?
f(x)=sinx+√3cosx=2sin(x+π/3)
-π/6≤x+π/3≤5π/6
所以-1/2≤sin(x+π/3)≤1/2
进而函数值域为[-1,1]
答案是[-1,2],可是sin5π/6明明等于1/2的…
当-π/2≤x≤π/2时,求函数f(x)=sinx+√3cosx的值域.
解从-π/6≤x+π/3≤5π/6开始错了
由-π/6≤x+π/3≤5π/6,
知当x+π/3=-π/6是,sin(x+π/3)有最小值=-1/2
当x+π/3=π/2是,sin(x+π/3)有最大值=1
即由-π/6≤x+π/3≤5π/6
得到-1/2≤sin(x+π/3)≤1
即-1≤2sin(x+π/3)≤2
即函数f(x)=sinx+√3cosx的值域[-1,2].