如图,在等边△ABC中,AB=4,点D是AB的中点,过点D做射线DE、DF,使角EDF=60°,射线DF
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 02:08:21
如图,在等边△ABC中,AB=4,点D是AB的中点,过点D做射线DE、DF,使角EDF=60°,射线DF
设CF=X,EF=Y,求Y关于X的函数解析式,并写出它的定义域。
求不要用余弦定理因为我们还没教过
设CF=X,EF=Y,求Y关于X的函数解析式,并写出它的定义域。
求不要用余弦定理因为我们还没教过
俊狼猎英团队为您解答
∵∠EDF=60°,∴∠ADF+∠BDE=120°,
∵ΔABC是等边三角形,∴∠A=∠B=60°,∴∠AFD+∠ADF=120°,
∴∠AFD=∠BDE,∴ΔADF∽ΔBED,∴AF/AD=BD/BE,AF=4-X,
∴BE=4/(4-X),
由相似知:DF/DE=AD/BE,AD=BD,
∴DF/DE=BD/BE,又∠EDF=∠B=60°,
∴ΔDEF∽ΔBDE,∴ΔADF∽ΔDEF
∴EF/DE=DE/BE,DE^2=Y*4/(4-X).
过E作EG⊥AB于G,BG=1/2BE=2/(4-X),EG=2√3/(4-X),
∴DG=BG-2=(2X-6)/(4-X),
∴DE^2=DG^2+EG^2=(4X^2-24X+48)/(4-X)^2
Y=(X^2-6X+12)/(4-X)
∵∠EDF=60°,∴∠ADF+∠BDE=120°,
∵ΔABC是等边三角形,∴∠A=∠B=60°,∴∠AFD+∠ADF=120°,
∴∠AFD=∠BDE,∴ΔADF∽ΔBED,∴AF/AD=BD/BE,AF=4-X,
∴BE=4/(4-X),
由相似知:DF/DE=AD/BE,AD=BD,
∴DF/DE=BD/BE,又∠EDF=∠B=60°,
∴ΔDEF∽ΔBDE,∴ΔADF∽ΔDEF
∴EF/DE=DE/BE,DE^2=Y*4/(4-X).
过E作EG⊥AB于G,BG=1/2BE=2/(4-X),EG=2√3/(4-X),
∴DG=BG-2=(2X-6)/(4-X),
∴DE^2=DG^2+EG^2=(4X^2-24X+48)/(4-X)^2
Y=(X^2-6X+12)/(4-X)
如图,在等边三角形ABC中,AB=4,点D是AB的中点,过D点作射线DE、DF,使角EDF=60°射线DF与AC交边于点
如图,在等边三角形ABC中,AB=4,点D是AB的中点,过点D作射线DE、DF,使∠EDF=60°,射线DF与AC边交于
在等边三角形ABC中AB=4,D是AB的中点,过D作射线DE、DF,使角EDF=60度,射线DF与AC边于F射线DE与B
在RT三角形ABC中,∠C=90度,AB=5,AC=3,点D是BC的中点,点E是边AB上的动点 DF⊥DE,交射线AC于
如图,在等腰直角三角形ABC中,∠ABC=90°,点D是AC边上的中点,过点 D作DE⊥DF,交AB于点E,交BC于点F
如图,在△ABC中,D是BC的中点,DE‖AB,DF‖AC,DE,DF分别交AC,AB于点E,F求证:BF=DE,CE=
如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D、E分别是边AB、AC的中点,点P从点D出发沿射线DE方向运
已知,如图,在△abc中,点d是bc的中点,de⊥ab,df⊥ac,垂足分别为e,f,且de=df,求证;△abc是等腰
如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上的中点,过D点作DE垂直DF,交AB于点E,交BC于点F
如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上的中点,过D点作DE垂直DF,交AB于点E,交BC于点F,
如图,在等腰三角形ABC中,∠ABC=90°,D为AC边上的中点,过D点作DE垂直DF,交AB于点E,交BC于点F,若A
如图,在△ABC中,AD是中线,过点D分别作△ABD、△ACD的高DE、DF,若AB=4cm,AC=3cm,DE+DF=