已知数列是首项为1,公差为2的等差数列,对每一个N*,在ak与ak+1之间插入个2 的k-1次方个2,得到新数列bn,设
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 10:40:22
已知数列是首项为1,公差为2的等差数列,对每一个N*,在ak与ak+1之间插入个2 的k-1次方个2,得到新数列bn,设Sn是数列bn的前n项和
(1)是问a5是数列bn的第几项
(2)求S100的值
(3)是否存在正整数m,使Sm=2010,若存在求出m的值,若不存在,说明理由
(1)是问a5是数列bn的第几项
(2)求S100的值
(3)是否存在正整数m,使Sm=2010,若存在求出m的值,若不存在,说明理由
数列{an}的通项公式:an=1+2(n-1)=2n-1
ak=2k-1,ak+1=2(k+1)-1=2k+1,于是数列{ bn}共有2^(k-1)+2项,
sn=b1+(b2+b3……)+bn=ak+2^(k-1)2+a(k+1)=4k+2^k
(1)a5=9不等于2
则有两种情况
是:数列{bn}的第一项
或者是:数列{bn}的最后一项,则有a5=2k+1=9,得k=4,所以数列{bn}共有(2^3+2)=10项,所以a5为数列{bn}的第一项或者第十项
(2)就是要求出k等于多少
先判断b100是否是最后一项:100=2^(k-1)+2,k是大于7小于8的小数,所以b100不是最后一项,于是
s100=ak+99*2=ak+198=2k+197,其中k是大于等于8的整数
(3)如果bm不是最后一项,则有:sm=ak+2^(m-1)=2k-1+2^(m-1)=2010,
2k+2^(m-1)=2011,等式左边只可能是偶数,等式右边是一个奇数,所以,不存在正整数使得此等式成立;
如果bm是最后一项,则有:sm=4k+2^k=2010,即:2k+2^(k-1)=1005,同上,不存在正整数m使得此等式成立.
ak=2k-1,ak+1=2(k+1)-1=2k+1,于是数列{ bn}共有2^(k-1)+2项,
sn=b1+(b2+b3……)+bn=ak+2^(k-1)2+a(k+1)=4k+2^k
(1)a5=9不等于2
则有两种情况
是:数列{bn}的第一项
或者是:数列{bn}的最后一项,则有a5=2k+1=9,得k=4,所以数列{bn}共有(2^3+2)=10项,所以a5为数列{bn}的第一项或者第十项
(2)就是要求出k等于多少
先判断b100是否是最后一项:100=2^(k-1)+2,k是大于7小于8的小数,所以b100不是最后一项,于是
s100=ak+99*2=ak+198=2k+197,其中k是大于等于8的整数
(3)如果bm不是最后一项,则有:sm=ak+2^(m-1)=2k-1+2^(m-1)=2010,
2k+2^(m-1)=2011,等式左边只可能是偶数,等式右边是一个奇数,所以,不存在正整数使得此等式成立;
如果bm是最后一项,则有:sm=4k+2^k=2010,即:2k+2^(k-1)=1005,同上,不存在正整数m使得此等式成立.
已知数列 是首项为1,公差为2的等差数列,,在ak与ak+1之间插入2^(k-1)个2,得到新数列 ,
一道数学数列,函数题已知各项均不为0的数列{an}的前k项和为Sk,且Sk=ak ×ak+1/2(ak和ak+1是第k项
数列{an}为等差数列,公差d≠0,且akx2+ak+1x+ak+2=0(k∈N*) (1)求证:当k取不同正整数时,此
已知各项大于零的数列{ak}的前k项和为Sk,且∑(上面是n,下面是k=1)ak^3(k为下标)=Sn^2,求数列通项
已知数列{an}的通项公式为an=|n-13|,那么满足ak+ak+1+…+ak+19=102的正整数k=______.
设an=4n-1,由bk=(a1+a2+a3+.ak)/k(k属于N+)确定的数列bn的前n项和为_____
已知数列{an}是首项为1,公差为2的等差数列.且bn=2的an次方(n属于N+)
已知数列〔an〕为公差不为零的等差数列,且a7=1,S13+ak=14,则k等于 1 7 13 4
【紧急--高一数学】已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an
(高二数学)已知数列{an}是首项a1=a,公差为2的等差数列;数列{bn}满足2bn=(n+1)an
29(14):已知数列{an}是首项a1=m,公差为2的等差数列;数列{bn}满足2bn=(n+1)an.
已知数列{an}是首项a1=a,公差为2的等差数列,数列{bn}满足2bn=(n+1)an