已知函数f(x)=a∧x+x²-xlna (1)求证:函数f(x)在(0,+∞)上为增函数.(2)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 11:09:50
已知函数f(x)=a∧x+x²-xlna (1)求证:函数f(x)在(0,+∞)上为增函数.(2)
已知函数f(x)=a∧x+x²-xlna
(1)求证:函数f(x)在(0,+∞)上为增函数.
(2)对任意的x1,x2∈[-1,1],绝对值f(x1)-f(x2)≦e-1恒成立,求a的取值范围.主要第二问,急-~
已知函数f(x)=a∧x+x²-xlna
(1)求证:函数f(x)在(0,+∞)上为增函数.
(2)对任意的x1,x2∈[-1,1],绝对值f(x1)-f(x2)≦e-1恒成立,求a的取值范围.主要第二问,急-~
I)证明:求导函数,可得f'(x)=axlna+2x-lna=2x+(ax-1)lna,
由于a>1,∴lna>0,当x>0时,ax-1>0,∴f'(x)>0,故函数f(x)在(0,+∞)上单调递增.
(Ⅱ)令f'(x)=2x+(ax-1)lna=0,得到x=0,f(x),f'(x)的变化情况如下表:
x(-∞,0)0(0,+∞)f'(x)-0+f(x)递减极小值1递增
因为函数y=|f(x)-t|-1有三个零点,所以f(x)=t±1共有三个根,即y=f(x)的图象与两条平行于x轴的直线y=t±1共有三个交点.
y=f(x)在(-∞,0)递减,在(0,+∞)递增,极小值f(0)=1也是最小值,当x→±∞时,f(x)→+∞.
∵t-1<t+1,∴f(x)=t+1有两个根,f(x)=t-1只有一个根.
∴t-1=fmin(x)=f(0)=1,∴t=2.(9分)
(Ⅲ)问题等价于f(x)在[-1,1]的最大值与最小值之差≤e-1.
由(Ⅱ)可知f(x)在[-1,0]上递减,在[0,1]上递增,
∴f(x)的最小值为f(0)=1,最大值等于f(-1),f(1)中较大的一个,
f(-1)=1/a+1+lna
,f(1)=a+1-lna,f(1)-f(-1)=a-
1a
-2lna,
记g(x)=x-
1x
-2lnx,(x≥1),则g′(x)=1+
1x2
-
2x
=(
1x
-1)2≥0(仅在x=1时取等号)
∴g(x)=x-
1x
-2lnx是增函数,
∴当a>1时,g(a)=a-
1a
-2lna>g(1)=0,
即f(1)-f(-1)>0,∴f(1)>f(-1),
于是f(x)的最大值为f(1)=a+1-lna,
故对∀x1,x2∈[-1,1],|f(x1)-f(x2)|≤|f(1)-f(0)|=a-lna,∴a-lna≤e-1,
当x≥1时,(x-lnx)′=
x-1x
≥0,∴y=x-lnx在[1,+∞)单调递增,
∴由a-lna≤e-1可得a的取值范围是1<a≤e.
由于a>1,∴lna>0,当x>0时,ax-1>0,∴f'(x)>0,故函数f(x)在(0,+∞)上单调递增.
(Ⅱ)令f'(x)=2x+(ax-1)lna=0,得到x=0,f(x),f'(x)的变化情况如下表:
x(-∞,0)0(0,+∞)f'(x)-0+f(x)递减极小值1递增
因为函数y=|f(x)-t|-1有三个零点,所以f(x)=t±1共有三个根,即y=f(x)的图象与两条平行于x轴的直线y=t±1共有三个交点.
y=f(x)在(-∞,0)递减,在(0,+∞)递增,极小值f(0)=1也是最小值,当x→±∞时,f(x)→+∞.
∵t-1<t+1,∴f(x)=t+1有两个根,f(x)=t-1只有一个根.
∴t-1=fmin(x)=f(0)=1,∴t=2.(9分)
(Ⅲ)问题等价于f(x)在[-1,1]的最大值与最小值之差≤e-1.
由(Ⅱ)可知f(x)在[-1,0]上递减,在[0,1]上递增,
∴f(x)的最小值为f(0)=1,最大值等于f(-1),f(1)中较大的一个,
f(-1)=1/a+1+lna
,f(1)=a+1-lna,f(1)-f(-1)=a-
1a
-2lna,
记g(x)=x-
1x
-2lnx,(x≥1),则g′(x)=1+
1x2
-
2x
=(
1x
-1)2≥0(仅在x=1时取等号)
∴g(x)=x-
1x
-2lnx是增函数,
∴当a>1时,g(a)=a-
1a
-2lna>g(1)=0,
即f(1)-f(-1)>0,∴f(1)>f(-1),
于是f(x)的最大值为f(1)=a+1-lna,
故对∀x1,x2∈[-1,1],|f(x1)-f(x2)|≤|f(1)-f(0)|=a-lna,∴a-lna≤e-1,
当x≥1时,(x-lnx)′=
x-1x
≥0,∴y=x-lnx在[1,+∞)单调递增,
∴由a-lna≤e-1可得a的取值范围是1<a≤e.
已知函数f(x)=ae^x-1/2x^2 1)若f(x)在R上为增函数,求a的取值;2)若a=1,求证:x>0时,f(x
已知函数fx=a^x+x²-xlna,a>1,(1)证明fx在(0,正无穷)上单调递增(2)函数y=
已知函数f(x)=x²-3x+2 (1)证明函数y=f(x)在(1,+∞)上为增函数?
已知函数f(x)=x²+a/x(x≠0,常数a∈R),若函数f(x)在[2,+∞)上为增函数,求实数a的取值范
已知定义在(0,+00)上的函数f(x)为增函数,且f(x)*f[f(x)+1/x]=1,则f(1)等于
求函数f(x)=a^n(a>0,a不等于1)的导数.图中f'(x)=a^xlna怎么由上一步的来?
已知函数f(x)=x^2+a/x(x≠0,常数a∈R). 若函数f(x)在x∈[2,+∞)上为增函数,求a的范围
已知f(x)在定义域(0,+∞)上为增函数,f(xy)=f(x)+f(y),f(2)=1,解不等式f(x)+f(x-2)
已知函数f(x)=x²+a/x(x≠0,常数a∈R)若f(x)在x∈[2,+∞)上为增函数,求a的取值范围
已知函数f(x)=x+2-x,求证:f(x)在(-∞,74)上是增函数.
已知定义域为r的函数fx满足.f{f(x)-x+x)=f(x)-x+x ①若f(2)=3求f(1)又若f(0)=a,求f
已知函数f(x)=kf(x+2)其中k为负数,且f(x)在区间[0,2]上有表达式f(x)=x(x-2)(1)求f(-1