关于椭圆内三角形的面积
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 11:42:22
关于椭圆内三角形的面积
如图,椭圆的方程为:(x^2)/(a^2)+(y^2)/(b^2)=1,a为椭圆的长轴,b为椭圆的短轴
.
设椭圆的两交点为F1、F2,且|P(F1)|+|P(F2)|=2a.且P(F1)与P(F2)的夹角为α.
请问如何证明三角形P(F1)(F2)的面积等于b^2×tan(α/2).
如图,椭圆的方程为:(x^2)/(a^2)+(y^2)/(b^2)=1,a为椭圆的长轴,b为椭圆的短轴
.
设椭圆的两交点为F1、F2,且|P(F1)|+|P(F2)|=2a.且P(F1)与P(F2)的夹角为α.
请问如何证明三角形P(F1)(F2)的面积等于b^2×tan(α/2).
设∠PF1F2=β ∠PF2F1=γ
由正弦定理得|PF1|/sinγ=|PF2|/sinβ=|F1F2|/sin(β+γ)
∴sin(β+γ)/(sinβ+sinγ)=|F1F2|/(|PF1|+|PF2|)=2c/2a=c/a
∴c/a={2sin[(β+γ)/2]cos[(β+γ)/2]}/{2sin[(β+γ)/2]cos[(β-γ)/2]}
化简得:
c/a=cos[(β+γ)/2]/cos[(β-γ)/2]
由余弦定理:|PF1|²+|PF2|²-2|PF2||PF1|cosα=|F1F2|²
∴(|PF1|+|PF2|)²-2(1+cosα)|PF2||PF1|=|F1F2|²
即|PF2||PF1|=4(a²-c²)/[2(1+cosα)]=2b²/(1+cosα)
∴S=1/2|PF2||PF1|sinα=1/2*[2b²/(1+cosα)]sinα=b²tan(α/2)
由正弦定理得|PF1|/sinγ=|PF2|/sinβ=|F1F2|/sin(β+γ)
∴sin(β+γ)/(sinβ+sinγ)=|F1F2|/(|PF1|+|PF2|)=2c/2a=c/a
∴c/a={2sin[(β+γ)/2]cos[(β+γ)/2]}/{2sin[(β+γ)/2]cos[(β-γ)/2]}
化简得:
c/a=cos[(β+γ)/2]/cos[(β-γ)/2]
由余弦定理:|PF1|²+|PF2|²-2|PF2||PF1|cosα=|F1F2|²
∴(|PF1|+|PF2|)²-2(1+cosα)|PF2||PF1|=|F1F2|²
即|PF2||PF1|=4(a²-c²)/[2(1+cosα)]=2b²/(1+cosα)
∴S=1/2|PF2||PF1|sinα=1/2*[2b²/(1+cosα)]sinα=b²tan(α/2)
关于椭圆中三角形的面积公式
关于求椭圆中焦点三角形面积的问题.、
椭圆内已知pF1,pF2的长和圆的方程求三角形pf1f2面积公式
求椭圆x2/16+y2/9=1的内接三角形的最大面积.
问一道关于椭圆的题以椭圆上一点和椭圆两,焦点为顶点的三角形面积最大值为1时,求椭圆长轴最小值
椭圆上三角形的面积公式
椭圆中三角形的最大面积
椭圆中三角形的最大面积.
椭圆内三角形面积问题过椭圆2x^2+y^2=2右焦点的直线交椭圆于A、B两点,求三角形AOB面积的最大值.
椭圆内的三角形.会否有类似双曲线知道点和两焦点的夹角能求出三角形的面积的公式?
我想知道椭圆的焦点三角形的面积公式
椭圆的焦点三角形面积公式的证明过程