作业帮 > 数学 > 作业

若锐角三角形ABC的内角A,B,C的对应边a,b,c,且tanA=根号3bc/b平方+c平方-a平方,...

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 14:24:25
若锐角三角形ABC的内角A,B,C的对应边a,b,c,且tanA=根号3bc/b平方+c平方-a平方,...
若锐角三角形ABC的内角A,B,C的对应边a,b,c,且tanA=根号3bc/b平方+c平方-a平方,求cosB+cosC的取值范围.
若锐角三角形ABC的内角A,B,C的对应边a,b,c,且tanA=根号3bc/b平方+c平方-a平方,...
(1)由coaA=(b²+c²-a²0/2bc,
代入tanA=√3bc/(b²+c²-a²)
sinA/cosA=√3bc/(b²+c²-a²)
sinA=√3/2,∴∠A=60°(∵三角形ABC是锐角三角形,∴∠A=120°舍去)
(2)cosB+cosC
=2cos(B+C)/2×cos(B-C)/2
∵∠B+∠C=120°,
∴2cos60°×cos(B-C)/2
=cos(B-C)/2
由0<(B-C)/2<60°,是单值函数,
∴1/2<cosB+cosC<1.