无穷大*无穷小+?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 19:05:26
无穷大*无穷小+?
举个例子吧,当x=+∞时 可不可以认为1/x是无穷小?
如果可以 x*(1/x)=1;
但是 当x=+∞时,(x*x)亦是无穷大,那么(x*x)*(1/x)=x=无穷大;
同样的 1/(x*x)可以看作无穷小,那么1/(x*x)*(x)=1/x=无穷小.
哪一个对?或者是别的?
解析;无穷是有"阶"之分的.并非所有的无穷大都一样,也不是所有的无穷小都是一定的.
x2是比x高阶的无穷大,而1/x2是比1/x高的无穷小.
至于验证阶数的方法,正是将两个量求商
无穷大A/无穷大B
为无穷大,A是比B高阶的无穷大
为常数不为0,那么A,B同阶
为0,那么A是比B低阶的无穷大.
无穷小是类似的.
两个无穷量相乘,相当于除另一个量的倒数.也就转化到上述的情况了.这些你学习了数学分析就会了,
注意,上述只是比较粗浅的表述,不是严格定义,请楼主勿忘.
如果可以 x*(1/x)=1;
但是 当x=+∞时,(x*x)亦是无穷大,那么(x*x)*(1/x)=x=无穷大;
同样的 1/(x*x)可以看作无穷小,那么1/(x*x)*(x)=1/x=无穷小.
哪一个对?或者是别的?
解析;无穷是有"阶"之分的.并非所有的无穷大都一样,也不是所有的无穷小都是一定的.
x2是比x高阶的无穷大,而1/x2是比1/x高的无穷小.
至于验证阶数的方法,正是将两个量求商
无穷大A/无穷大B
为无穷大,A是比B高阶的无穷大
为常数不为0,那么A,B同阶
为0,那么A是比B低阶的无穷大.
无穷小是类似的.
两个无穷量相乘,相当于除另一个量的倒数.也就转化到上述的情况了.这些你学习了数学分析就会了,
注意,上述只是比较粗浅的表述,不是严格定义,请楼主勿忘.