△ABC中,AD为∠BAC平分线,DE⊥AB,DF⊥AC,求证:AD⊥EF,AD平分EF
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 22:09:54
△ABC中,AD为∠BAC平分线,DE⊥AB,DF⊥AC,求证:AD⊥EF,AD平分EF
证明:因为 AD为∠BAC平分线
所以 ∠BAD=∠DAC
又因为 DE⊥AB,DF⊥AC
所以 ∠AED=∠AFD=90度
在三角形AED和三角形AFD中
{∠BAD=∠DAC
∠AED=∠AFD
AD=AD(公共边)
所以三角形AED全等于三角形AFD
所以AE=AF
在三角形AEM和三角形AFM中
{AE=AF
∠BAD=∠DAC
AM=AM(公共边)
所以三角形AEM全等于三角形AFM
所以∠AME=∠AMF,ME=MF
又因为∠AME+∠AMF=180度
所以∠AME=∠AMF=90度
所以AD⊥EF
因为ME=MF
所以AD平分EF
所以 ∠BAD=∠DAC
又因为 DE⊥AB,DF⊥AC
所以 ∠AED=∠AFD=90度
在三角形AED和三角形AFD中
{∠BAD=∠DAC
∠AED=∠AFD
AD=AD(公共边)
所以三角形AED全等于三角形AFD
所以AE=AF
在三角形AEM和三角形AFM中
{AE=AF
∠BAD=∠DAC
AM=AM(公共边)
所以三角形AEM全等于三角形AFM
所以∠AME=∠AMF,ME=MF
又因为∠AME+∠AMF=180度
所以∠AME=∠AMF=90度
所以AD⊥EF
因为ME=MF
所以AD平分EF
如图所示,已知△ABC,AD是∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,连接EF.求证:AD垂直平分EF
如图,在△ABC中,AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F,求证:AD⊥EF.
【急】如图所示,在△ABC中,AD平分∠BAC,DE⊥AB,DF⊥AC,求证AD是EF的垂直平分线.
如图△ABC,AD平分∠BAC,AD⊥EF,求DE⊥AB,DF⊥AC
如图,在三角形ABC中,AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点E,求证AD垂直EF
已知:如图,AD是△ABc的角平分线,DE⊥AB,DF⊥Ac,垂足分别为E、F.求证:AD垂直平分EF.
AD是三角形ABC中∠BAC的角平分线,DE平行AC.DF平行AB,求证AD垂直EF.
已知AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是E、F.求证:AD垂直平分EF
如图,AD是△ABC的角平分线,BE⊥AB,DF⊥AC,垂足分别为E、F.求证:AD垂直平分EF
如图,已知AD是三角形ABC的角平分线,DE⊥AB于点E,DF⊥AC于点F.求证:AD垂直平分EF.
如图,△ABC中,∠C=90°,AD平分∠BAC,ED⊥BC,DF‖AB,求证,AD与EF互相垂直平分
已知:如图,AD是△ABC的角平分线,DE⊥AB、DF⊥AC,点E、F为垂足,连接E、F.求证:AD垂直平分EF