作业帮 > 数学 > 作业

cos(2π/7)+cos(4π/7)+cos(6π/7)= -1/2.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 07:19:05
cos(2π/7)+cos(4π/7)+cos(6π/7)= -1/2.
证明[cos(2π/7)]^2+[cos(4π/7)]^2+[cos(6π/7)]^2=5/4
cos(2π/7)+cos(4π/7)+cos(6π/7)= -1/2.
根据二倍角公式,
[cos(2π/7)]^2=[cos(4π/7)+1]/2,
[cos(4π/7)]^2=[cos(8π/7)+1]/2=[cos(2π-8π/7)+1]/2=[cos(6π/7)+1]/2,
[cos(6π/7)]^2=[cos(12π/7)+1]/2=[cos(2π-12π/7)+1]/2=[cos(2π/7)+1]/2,
所以[cos(2π/7)]^2+[cos(4π/7)]^2+[cos(6π/7)]^2
=[cos(2π/7)+cos(4π/7)+cos(6π/7)+3]/2=[-1/2+3]/2=5/4