线性代数中一个特征值为什么能对应多个线性无关的特征向量?
为什么一个特征值不能对应两个线性无关的特征向量?
为什么不同特征值对应的特征向量一定线性无关?还有怎么判断一个n阶矩阵有n个线性无关的特征向量?
线性代数问题 一个矩阵若可对角化 那么 它的一个特征值若为k重特征根 则对应k个线性无关的特征向量
求特征值及特征值对应的线性无关特征向量,
为什么不同特征值的特征向量线性无关?
线性代数问题,矩阵a要能够相似对角化,并且特征值有重根,为什么要有二重根的那个特征值对应有两个线性无关的特征向量呢?这与
线性代数:矩阵a要能够相似对角化,并且特征值有重根,为什么要有二重根的那个特征值对应有两个线性无关的特征向量呢?这与此时
在关于方阵的特征值和特征向量中,为什么一个单根的特征值只能对应一个线性无关特征向量.也就是说为什么R(A-λ0E)=n-
一个n阶方阵的不同特征值对应的特征向量线性无关,错的,如何证明?
线性代数:矩阵A有3个线性无关的特征向量,λ=2是A的二重特征值,则λ=2有两个线性无关的特征向量.
线性代数任意n-1个向量都线性无关 是否能推出n个向量都线性无关,若推不出,为什么矩阵相似对角化的时候 若特征值a对应特
线性代数:如果一个3X3矩阵A有3个线性无关的特征向量,它的特征值是1,1,2,为什么他的r(E-A)=1?