椭圆中心O,长轴,短轴分别为2a,2b,A.B分别为椭圆的两点,OA垂直OB,求证1/OA的模平方+1/OB的模平方为定
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 13:29:11
椭圆中心O,长轴,短轴分别为2a,2b,A.B分别为椭圆的两点,OA垂直OB,求证1/OA的模平方+1/OB的模平方为定值
将椭圆方程改写为:x=acosθ,y=bsinθ,其中θ为OP(x,y)与Ox轴的夹角
设A(x1,y1)对应的是θ1,B(x2,y2)对应的是θ2
根据题意,OA⊥OB,则|θ2-θ1|=π/2
不失一般性,可另θ2=θ1+π/2
则cosθ2=-sinθ1,sinθ2=cosθ1
x1 = acosθ1,y1 = bsinθ1;
x2 = acosθ2 = -asinθ1,y2 = bsinθ2 = bcosθ1
|OA|^2 = x1^2 + y1^2 = a^2cos^2θ1 + b^2sin^2θ1
|OB|^2 = x2^2 + y2^2 = a^2sin^2θ1 + b^2cos^2θ1
|OA|^2+|OB|^2 = (a^2+b^2)*(cos^2θ1+sin^2θ1) = a^2+b^2
|OA|^2*|OB|^2 = (a^2cos^2θ1 + b^2sin^2θ1)*(a^2sin^2θ1 + b^2cos^2θ1)
= (a^4+b^4)*sin^2θ1cos^2θ1 + a^2b^2*(cos^4θ1+sin^4θ1)
= (a^4+b^4-2a^2b^2)*sin^2θ1cos^2θ1 + a^2b^2*(cos^4θ1+sin^4θ1+2sin^2θ1cos^2θ1)
= (a^2-b^2)^2*sin^2θ1cos^2θ1 + a^2b^2*(cos^2θ1+sin^2θ1)^2
= (a^2-b^2)^2*sin^2θ1cos^2θ1 + a^2b^2
= (ab)^2 + (c*sinθ1cosθ1)^2
1/|OA|^2 + 1/|OB|^2 = (|OA|^2 + |OB|^2)/(|OA|^2*|OB|^2)
= (a^2+b^2)/[(ab)^2+(c*sinθ1cosθ1)^2]
似乎不为常数嘛
设A(x1,y1)对应的是θ1,B(x2,y2)对应的是θ2
根据题意,OA⊥OB,则|θ2-θ1|=π/2
不失一般性,可另θ2=θ1+π/2
则cosθ2=-sinθ1,sinθ2=cosθ1
x1 = acosθ1,y1 = bsinθ1;
x2 = acosθ2 = -asinθ1,y2 = bsinθ2 = bcosθ1
|OA|^2 = x1^2 + y1^2 = a^2cos^2θ1 + b^2sin^2θ1
|OB|^2 = x2^2 + y2^2 = a^2sin^2θ1 + b^2cos^2θ1
|OA|^2+|OB|^2 = (a^2+b^2)*(cos^2θ1+sin^2θ1) = a^2+b^2
|OA|^2*|OB|^2 = (a^2cos^2θ1 + b^2sin^2θ1)*(a^2sin^2θ1 + b^2cos^2θ1)
= (a^4+b^4)*sin^2θ1cos^2θ1 + a^2b^2*(cos^4θ1+sin^4θ1)
= (a^4+b^4-2a^2b^2)*sin^2θ1cos^2θ1 + a^2b^2*(cos^4θ1+sin^4θ1+2sin^2θ1cos^2θ1)
= (a^2-b^2)^2*sin^2θ1cos^2θ1 + a^2b^2*(cos^2θ1+sin^2θ1)^2
= (a^2-b^2)^2*sin^2θ1cos^2θ1 + a^2b^2
= (ab)^2 + (c*sinθ1cosθ1)^2
1/|OA|^2 + 1/|OB|^2 = (|OA|^2 + |OB|^2)/(|OA|^2*|OB|^2)
= (a^2+b^2)/[(ab)^2+(c*sinθ1cosθ1)^2]
似乎不为常数嘛
已知椭圆的中心为O,长轴.短轴的长分别为2a,2b(a>b>0),A,B分别为椭圆上的两点,且OA垂直OB
已知椭圆的中心为O,长轴、短轴的长分别为2a,2b〔a〉b〉0〕,A ,B分别为椭圆上的两点,且OA⊥OB.
已知椭圆中心为点O,长轴短轴分别为2a,2b(a>b>0),A,B分别为椭圆上的两点,且OA垂直OB.
已知椭圆C的中心为原点O,F(1,0)是它的一个焦点,直线l经过点F与椭圆C交与A,B两点,l垂直于X轴,且OA*OB=
已知椭圆C的中心为坐标原点O,焦点在X轴上,斜率为1且过椭圆右焦点F的直线交椭圆于A,B两点,向量OA+OB与向量a=(
已知椭圆中心为坐标原点O,焦点在x轴上,斜率为1且过椭圆右焦点的直线交椭圆于A,B两点.向量OA+向量OB与向量a(3,
已知椭圆的中心坐标原点为O,右焦点为F(1,0),短轴长为2,求直线L:Y=KX+B于AB两点且OA垂直于OB,求证直
已知直线m:y=kx+b与椭圆X的平方/2+y2=1相交于A,B两点,O为原点.若OA向量丄OB向量,求直线m与以原点为
斜率为2的直线与椭圆x^2/4+y^2=1交于两点A,B,求|OA||OB|范围(O为坐标原点)
已知椭圆中心为O,长轴,短轴的长分别为2a,2b(a>b>0),
若椭圆ax^2+by^2=1与直线x+y=1交于A,B两点,M为中心,直线OM(O为原点)的斜率为√2/2,且OA⊥OB
椭圆X^2/a^2+y^2/b^2=1(a>b>0)上有两点A、B满足OA垂直于OB(O为坐标原点),求证:O到直线AB