求解此方程组 x(x+y+z)=6.y(x+y+z)=12.z(x+y+z)=18
解方程组{x(x+y+z)=6,y(x+y+z)=12,z(x+y+z)=18
(x+y-z)(x-y+z)=
求解三元一次方程组:{x+y/2=y+z/3=z+x/4 x+y+z=27
X+Y+Z=?
已知x、y、z满足方程组:x+y-z=6;y+z-x=2;z+x-y=0 求x、y、z的值
f(x,y,z,w)=x*(x+y)*(x+y+z)*(x+y+z+w)
解方程组x-4y+z=-3,2x+y-z=18,x-y-z=7.
解下列方程组x+y+z=18 x+y-z=0 x-2y+z=0
x y z x+y--- = --- = ---- ----y+Z z+x x+y ,求 z 的值 .求 x+y----
已知x+y-z/z=x-y+z/y=-x+y+z/x,且xyz不等于0,求分式[(x+y)(x+z)(y+z)]/xyz
若z分之x+y+z=y分之x-y+z=x分之-x+y+z,求xyz分之(x+y)(y+z)(z+x)
y+z÷x=Z+X÷y=X+Y÷z,X+Y+Z不等0求X+Y-Z÷X+Y+z值