运用运算律计算:1/x+y+z*(1/x+1/y+1/z)×1/xy+yz+zx*1/xy+1/yz+1/zx
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 19:26:11
运用运算律计算:1/x+y+z*(1/x+1/y+1/z)×1/xy+yz+zx*1/xy+1/yz+1/zx
你的表达可能有点问题,是不是想求:
[1/(x+y+z)](1/x+1/y+1/z)[1/(xy+yz+zx)][1/(xy)+1/(yz)+1/(zx)]?
若是这样,则方法如下:
∵1/x+1/y+1/z=(yz+zx+xy)/(xyz),
∴(1/x+1/y+1/z)[1/(xy+yz+zx)]=1/(xyz).
∵1/(xy)+1/(yz)+1/(zx)=(z+x+y)/(xyz),
∴[1/(x+y+z)])][1/(xy)+1/(yz)+1/(zx)]=1/(xyz).
∴原式=1/(xyz)^2.
注:若原题不是我所猜测的那样,则请你补充说明.
[1/(x+y+z)](1/x+1/y+1/z)[1/(xy+yz+zx)][1/(xy)+1/(yz)+1/(zx)]?
若是这样,则方法如下:
∵1/x+1/y+1/z=(yz+zx+xy)/(xyz),
∴(1/x+1/y+1/z)[1/(xy+yz+zx)]=1/(xyz).
∵1/(xy)+1/(yz)+1/(zx)=(z+x+y)/(xyz),
∴[1/(x+y+z)])][1/(xy)+1/(yz)+1/(zx)]=1/(xyz).
∴原式=1/(xyz)^2.
注:若原题不是我所猜测的那样,则请你补充说明.
运用运算律计算:1/x+y+z*(1/x+1/y+1/z)×1/xy+yz+zx*1/xy+1/yz+1/zx
(1/x+1/y+1/z)×(xy)/(xy+yz+zx)
xy+yz+zx=1,求x√yz+y√zx+z√xy
分解因式:xyz-yz-zx-xy+x+y+z-1
xy+yz+zx=1,x,y,z>=0
已知xy:yz:zx=3:2:1,求①x:y:z ②x/yz:y/zx
一道因式分解题,急xyz+xy+yz+zx+x+y+z+1
分解因式:1.xyz-yz-zx-xy+x+y+z-1
x+y+z=1求 f=xy+yz+zx最大值
已知xy:yz:zx=3:2:1,求(x+y):z的值
已知xy/x+y=3,yz/y+z=2,zx/z+x=1,求y的值
X+Y/XY=1,Y+Z/YZ=2,Z+X/ZX=3 求X的值