作业帮 > 数学 > 作业

求证:存在无数多个自然数k,使得n4+k不是质数

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 17:55:54
求证:存在无数多个自然数k,使得n4+k不是质数
n4表示为n的4次方
求证:存在无数多个自然数k,使得n4+k不是质数
证:存在无数多个自然数k,使得n4+k不是质数
n^4+4*k^4=n^4+4n^2*k^2+4*k^4-4n^2*k^2
=(n^2+2*k^2)^2-4n^2*k^2
=(n^2+2*k^2-2n*k)*(n^2+2*k^2-2n*k)
显然假如令K=4*k^4,那么n^4+K=n^4+4*k^4当然不是质数,因为它能分解为(n^2+2*k^2-2n*k)*(n^2+2*k^2-2n*k)
这里k=0,1,2,3,…………
所以有无穷多个