导数f(x)=x^3+3bx^2+cx+d在负无穷到0上为增函数,(0,2)上是减函数,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 12:14:08
导数f(x)=x^3+3bx^2+cx+d在负无穷到0上为增函数,(0,2)上是减函数,
f(x)=x^3+3bx^2+cx+d在负无穷到0上为增函数,(0,2)上是减函数,且f(x)=0的一个根为-b,求证f(x)=0还有不同于-b的实根x1,x2,且x1,-b,x2成等差数列
f(x)=x^3+3bx^2+cx+d在负无穷到0上为增函数,(0,2)上是减函数,且f(x)=0的一个根为-b,求证f(x)=0还有不同于-b的实根x1,x2,且x1,-b,x2成等差数列
f(x)=x³+3bx²+cx+d,
f′(x)=3x²+6bx+c,
∵f(x)在(-∞,0 ]上为增函数,在(0,2)上为减函数,
∴f′(0)=0,即c=0,且-2b≥2,即b≤-1
f(x)=x³+3bx²+d,
又f(x)=0的一个根为-b,
∴-b³+3b³+d=0,即d= -2b³,(b≤-1)
f(x)=x³+3bx²-2b³
=x³+b³+3bx²-3b³
=(x+b)(x²-bx+b²)+3b(x+b)(x-b)
=(x+b)[ (x²-bx+b²)+3b(x-b)]
=(x+b)(x²+2bx-2b²)
设g(x)= x²+2bx-2b²,(b≤-1)
△=4b²+8b²=12 b²≥12>0,
∴方程g(x)=0有两个不等实根x1,x2,且x1+x2= -2b
又g(-b)=b²-2b²-2b²=-3b²≥3,g(-b) ≠0,
∴x1,x2与-b不相等,
又x1+x2= -2b,
∴x1,-b,x2成等差数列,
综上,方程f(x)=0还有不同于-b的实根x1,x2,且x1,-b,x2成等差数列.
f′(x)=3x²+6bx+c,
∵f(x)在(-∞,0 ]上为增函数,在(0,2)上为减函数,
∴f′(0)=0,即c=0,且-2b≥2,即b≤-1
f(x)=x³+3bx²+d,
又f(x)=0的一个根为-b,
∴-b³+3b³+d=0,即d= -2b³,(b≤-1)
f(x)=x³+3bx²-2b³
=x³+b³+3bx²-3b³
=(x+b)(x²-bx+b²)+3b(x+b)(x-b)
=(x+b)[ (x²-bx+b²)+3b(x-b)]
=(x+b)(x²+2bx-2b²)
设g(x)= x²+2bx-2b²,(b≤-1)
△=4b²+8b²=12 b²≥12>0,
∴方程g(x)=0有两个不等实根x1,x2,且x1+x2= -2b
又g(-b)=b²-2b²-2b²=-3b²≥3,g(-b) ≠0,
∴x1,x2与-b不相等,
又x1+x2= -2b,
∴x1,-b,x2成等差数列,
综上,方程f(x)=0还有不同于-b的实根x1,x2,且x1,-b,x2成等差数列.
已知f(x)=x^3+bx^2+cx+d在(负无穷到0的开区间)上是增函数,在(0到2的闭区间上)是减函数,且方程f(x
定义在R上的函数f(x)=ax^3+bx^2+cx+3同时满足以下条件 1 f(x)在负无穷到-1单增在(-1,0)上单
f(x)=x^3+bx^2+cx+d在(负无穷,0)上是增函数,在[0,2]上是减函数,且方程f(x)=0有三个根,它们
已知f(x)=ax^3+bx^2+cx在区间[0,1]上是增函数,在区间[-无穷,0],[1,+无穷]上是减函数,又f'
已知f(x)=ax^3+bx^2+cx在区间(0,1)上是增函数,在区间(负无穷,0),(1,正无穷)上是减函数.又f'
下图为函数f(x)=-ax^3+bx^2+cx+d的图像f'(x)为函数f(x)的导数函数,
已知:函数f(x)=x^3+bx^2+cx+d在(-∞,0)是增函数……
设f(x)=ax^3+bx^2+cx+d(a>0)则f(x)为R上增函数的充要条件是什么?
已知函数f(x)=x^3+bx^2+cx+d在(-x,0)上是增函数,在[0,2]上是减函数,且f(x)=0的一个根为x
已知f(x)=x^3+bx^2+cx+d在区间(-∞,0)上是增函数,在[0,2]上是减函数,且方程f(x)=0
已知函数y=f(x)是定义在负无穷到正无穷上的奇函数,且在[0到正无穷]上为增函数
设函数f(x)=2x^3-3(a+1)x^2+6ax+8,其中a属于R.若f(x)在负无穷到0上为增函数,求a取值范围