作业帮 > 数学 > 作业

A是椭圆长轴的一个端点,O是椭圆的中心,若椭圆上存在一点P,使∠OPA=π2

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 03:15:43
A是椭圆长轴的一个端点,O是椭圆的中心,若椭圆上存在一点P,使∠OPA=
π
2
A是椭圆长轴的一个端点,O是椭圆的中心,若椭圆上存在一点P,使∠OPA=π2
设椭圆的方程为
x2
a2+
y2
b2=1,设 A (a,0),点P(acost,bsint).
 由题意得,

PO •

PA=0,∴(-acost,-bsint)•(a-acost,-bsint)=0,
∴(-acost )•(a-acost )+b2sin2t=0,化简可得 c2cos2t-a2cost+a2-c2=0,
∴e2cos2t-cost+1-e2=0,∴e2=
1
1+cost.
又∵0<e<1,0<1+cost<2,∴
1
2<e2<1,∴

2
2<e<1,
故答案为

2
2<
c
a<1.
已知A是椭圆长轴的一个端点,O是中心,若椭圆上存在一点P有OP垂直于AP,求椭圆离心率的取值范围. 已知椭圆x^2/a^2+y^2/b^2=1,A,B是椭圆长轴的两个端点,p是椭圆上异于A,B上 任意一点,若PA,PB的 已知椭圆x2a2+y2b2=1(a>b>0),M,N是椭圆长轴的两个端点,P是椭圆上除了长轴端点外的任意一点,且直线PM P是椭圆x^2/a^2+y^2/b^2=1上位于第一象限的一点 F是椭圆的右焦点,O是椭圆的中心,B是椭圆的上顶点,H是 已知椭圆x^2/a^2+y^2/b^2=1,A,B是椭圆短轴的两个端点,p是椭圆上异于A,B上 任意一点,若PA,PB的 已知点A ,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上,且在x轴上方,P 已知椭圆的中心在原点,焦点在x轴上,过他的右焦点作斜率为1的直线l交椭圆于A、B两点,若椭圆上存在一点C,使OA向量加O 已知点A、B分别是椭圆X^2/36十y^2/20=1长轴的左右端点;点F是椭圆的右焦点,点P在椭圆上,且位于X轴上方PA 点A,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上且位于x轴上方PA垂直于 已知椭圆C的中心在坐标原点O,焦点在x轴上,F1,F2分别是椭圆C的左右焦点,M是椭圆短轴的一个端点,过F1的直线L与椭 已知椭圆中心是原点,焦点在坐标轴上,焦距等于长轴端点和短轴端点间的距离,且经过点A(根号3,根号2),求椭圆的方程 设P是椭圆X^2/a^2+y^2短轴上的一个端点,Q为椭圆上的一个动点,求|QP|的最大值