椭圆C的离心率是(√2)/2,焦点F(c,0)(c>0)与椭圆上的点的最短距离是(√2)-1
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 15:50:06
椭圆C的离心率是(√2)/2,焦点F(c,0)(c>0)与椭圆上的点的最短距离是(√2)-1
求:(1)求椭圆C的方程
(2)直线X-Y-M=0,与椭圆C在不同的点A,B相交,线段AB的中点在圆X^2+Y^2=5/9时求M的值.
求:(1)求椭圆C的方程
(2)直线X-Y-M=0,与椭圆C在不同的点A,B相交,线段AB的中点在圆X^2+Y^2=5/9时求M的值.
【1解】:
焦点F(c,0)(c>0)与椭圆上的点的最短距离是(√2)-1
根据椭圆焦半径公式:|PF1|=a+ex;|PF2|=a-ex
x取最大值a,a-ex最小(其实就是右端点);
所以a-ea=(1-(√2)/2)*a=(√2)-1,解得:a=√2
则e=c/a=c/√2=(√2)/2,得:c=1;b=(a^2-c^2)^(1/2)=1
所以椭圆C的方程:x^2/2+y^2=1
【2解】:
直线:y=x-m;椭圆:x^2/2+y^2=1
联立:x^2+2(x-m)^2=2
化简:3x^2-4mx+2m^2-2=0
⊿=16m^2-12(2m^2-2)=24-8m^2>0
由韦达定理:x[a]+x[b]=4m/3
由直线方程:y[a]+y[b]=x[a]+x[b]-2m=-2m/3
AB中点坐标((x[a]+x[b])/2,(y[a]+y[b])/2),代入得:(2m/3,-m/3)
中点在圆X^2+Y^2=5/9上,代入得:
4m^2/9+m^2/9=5/9
解得:m^2=1,即:m=±1
焦点F(c,0)(c>0)与椭圆上的点的最短距离是(√2)-1
根据椭圆焦半径公式:|PF1|=a+ex;|PF2|=a-ex
x取最大值a,a-ex最小(其实就是右端点);
所以a-ea=(1-(√2)/2)*a=(√2)-1,解得:a=√2
则e=c/a=c/√2=(√2)/2,得:c=1;b=(a^2-c^2)^(1/2)=1
所以椭圆C的方程:x^2/2+y^2=1
【2解】:
直线:y=x-m;椭圆:x^2/2+y^2=1
联立:x^2+2(x-m)^2=2
化简:3x^2-4mx+2m^2-2=0
⊿=16m^2-12(2m^2-2)=24-8m^2>0
由韦达定理:x[a]+x[b]=4m/3
由直线方程:y[a]+y[b]=x[a]+x[b]-2m=-2m/3
AB中点坐标((x[a]+x[b])/2,(y[a]+y[b])/2),代入得:(2m/3,-m/3)
中点在圆X^2+Y^2=5/9上,代入得:
4m^2/9+m^2/9=5/9
解得:m^2=1,即:m=±1
一道关于椭圆的题目椭圆C的中心为坐标原点O,焦点在Y轴上,离心率e=(根号2)/2,椭圆上的点到焦点的最短距离为1-e,
已知F是椭圆的左焦点,A是椭圆短轴上的一个顶点,椭圆的离心率为1/2,点B在x轴上,A、B、F三点确定的圆C恰好与直线
已知椭圆C:x^2+y^2/m=1的焦点在y轴上,且离心率为√3/2.过点M(0,3)的直线l与椭圆C相交于AB两点.
已知椭圆C:x2/a2+y2/b2=1(a>b>0)的离心率为√2/2,点F为椭圆的右焦点,点A、B分别为椭圆的左右顶点
已知中心在原点的椭圆C的右焦点为F(1,0),离心率等于1/2,则C的方程是?
已知焦点在x轴上的椭圆C过点(0,1)离心率为√3/2,M为椭圆C的右顶点,求椭圆C标准方程
F是椭圆x^2/a^2+y^2/b^2=1(a>b>0)的一个焦点,A,B是椭圆的两个顶点,椭圆的离心率为1/2.点C在
已知中心在原点的椭圆C过点M(1,根号6/2),F(-根号2,0)是椭圆的左焦点,P,Q是椭圆C上的两个动点,且|PF|
椭圆右焦点F(c,0),点A(a^2/c,0)若在椭圆上存在点P满足线段AP的垂直平分线过点F,则椭圆的离心率为
已知椭圆C的焦点在y轴上,离心率为3分之2根号2且过点(1,0),求椭圆C的方程
已知椭圆C的左右焦点分别为(-√2,0),(√2,0),离心率是3分之√6,直线y=t与椭圆C交于不同的两点M,N,以线
已知椭圆C:的焦距是2,离心率是0.5; (1)求椭圆的方程; (2)过椭圆左焦点F的直线L交椭圆于A、B两点