证明:设是一个群,则对于任意a,b∈G,必存在惟一的x∈G使得a•x=b.
微分中值定理证明题设f(x),g(x)在[a,b]上可导,并且g’(x) ≠0,证明存在c ∈(a,b)使得 (f(a)
不动点的证明 设f(x)在上=[a,b]连续,且f(D)=[a,b],证明存在使得g=f(g)
微积分 证明题设函数g(x)在[a,b]上连续,在(a,b)上可导,证明:(a,b)内至少存在一点c,使得g'(c)=[
数学群的相关概念设G是一个幺半群,使得任意a,b属于G,方程ax=b,ya=b有唯一解 ,证明G是一个群,
设函数f(x)和g(x)在区间[a,b]上连续,且g(x)≠0,x∈[a,b],证明:至少存在一点ξ∈(a,b),使得:
已知函数f(x)=e^2x,g(x)=lnx+1/2,对任意a∈R,存在b∈(0,正无穷),使得f(a)=g(b),则b
设f(x)在[a,b]上连续,且恒为正,证明对于任意的x1,x2∈(a,b),x1<x2,必存在一点ξ∈[x1,x2],
有关矩阵的证明题“证明对任意的n阶方阵A,存在一个对称矩阵B及一个反对称矩阵C,使得A=B+C,且这种分解是惟一的.”其
证明:若函数f(x)和g(x)在区间[a,b]上连续,则至少存在一点ξ∈[a,b],使得:
设函数f(x)=2x/(x^2+1),g(x)=x^2-3x+a,若对于任意x1∈(0,1)总存在x2∈(0,1),使得
高数证明题!设f(x),g(x)在[a,b]连续且可导,g'(x)不等于0,证明存在ζ∈(a,b)
设函数f(x)在[a,b]上三阶可导,证明:存在一点e∈(a,b),使得