如图1在平面直角坐标系中,⊙O1与x轴切于A(-3,0)与y轴交于B、C两点,BC=8,连AB.
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/18 10:02:57
如图1在平面直角坐标系中,⊙O1与x轴切于A(-3,0)与y轴交于B、C两点,BC=8,连AB.
(1)求证:∠ABO1=∠ABO;
(2)求AB的长;
(3)如图2,过A、B两点作⊙O2与y轴的正半轴交于M,与O1B的延长线交于N,当⊙O2的大小变化时,得出下列两个结论:①BM-BN的值不变;②BM+BN的值不变.其中有且只有一个结论正确,请判断正确结论并证明.
(1)求证:∠ABO1=∠ABO;
(2)求AB的长;
(3)如图2,过A、B两点作⊙O2与y轴的正半轴交于M,与O1B的延长线交于N,当⊙O2的大小变化时,得出下列两个结论:①BM-BN的值不变;②BM+BN的值不变.其中有且只有一个结论正确,请判断正确结论并证明.
(1)连接O1A,则O1A⊥OA,又OB⊥OA,
∴O1A∥OB,
∴∠O1AB=∠ABO,
又∵O1A=O1B,
∴∠O1AB=∠O1BA,
∴∠ABO1=∠ABO;
(2)作O1E⊥BC于点E,
∴E为BC的中点,
∵BC=8,∴BE=
1
2BC=4,
∵A(-3,0),
∴O1E=OA=3,
在直角三角形O1BE中,
根据勾股定理得:O1B=
BE2+O1B2=
42+32=5,
∴O1A=EO=5,
∴BO=5-4=1,
在直角三角形AOB中,
根据勾股定理得:AB=
AO2+BO2=
10;
(3)①BM-BN的值不变,理由为:
证明:在MB上取一点G,使MG=BN,连接AM、AN、AG、MN,
∵∠ABO1为四边形ABMN的外角,
∴∠ABO1=∠NMA,又∠ABO1=∠ABO,
∴∠ABO=∠NMA,又∠ABO=∠ANM,
∴∠AMN=∠ANM,
∴AM=AN,
∵∠AMG和∠ANB都为
AB所对的圆周角,
∴∠AMG=∠ANB,
在△AMG和△ANB中,
∵
AM=AN
∠AMG=∠ANB
MG=BN,
∴△AMG≌△ANB(SAS),
∴O1A∥OB,
∴∠O1AB=∠ABO,
又∵O1A=O1B,
∴∠O1AB=∠O1BA,
∴∠ABO1=∠ABO;
(2)作O1E⊥BC于点E,
∴E为BC的中点,
∵BC=8,∴BE=
1
2BC=4,
∵A(-3,0),
∴O1E=OA=3,
在直角三角形O1BE中,
根据勾股定理得:O1B=
BE2+O1B2=
42+32=5,
∴O1A=EO=5,
∴BO=5-4=1,
在直角三角形AOB中,
根据勾股定理得:AB=
AO2+BO2=
10;
(3)①BM-BN的值不变,理由为:
证明:在MB上取一点G,使MG=BN,连接AM、AN、AG、MN,
∵∠ABO1为四边形ABMN的外角,
∴∠ABO1=∠NMA,又∠ABO1=∠ABO,
∴∠ABO=∠NMA,又∠ABO=∠ANM,
∴∠AMN=∠ANM,
∴AM=AN,
∵∠AMG和∠ANB都为
AB所对的圆周角,
∴∠AMG=∠ANB,
在△AMG和△ANB中,
∵
AM=AN
∠AMG=∠ANB
MG=BN,
∴△AMG≌△ANB(SAS),
如图1,在平面直角坐标系xoy中,直线y=x+6与x轴交于A,与y轴交于B,BC⊥AB交x轴于C.
如图在平面直角坐标系中,直线y=-2/3x+2与x轴、y轴分别交于B、C两点,经过B、C两点的抛物线与x交A(-1,0)
如图在平面直角坐标系中,直线y=-2/3x+2与x轴,y轴分别交于B,C两点,经过B,C两点的抛物线与x交A(-1,0)
如图,在平面直角坐标系中,抛物线y=x²+2x-3交X轴与A,B两点,交Y轴于点C
如图,在平面直角坐标系中,直线y=x+6与x轴交于A,与y轴交于B,BC⊥AB交x轴于C
如图,在平面直角坐标系xoy中,抛物线y=x2+bx+c与x轴交于a、b两点(点a在点b的左侧),与y轴交于点c(0,3
如图,在平面直角坐标系xOy中,一次函数 的图象与x轴交于点A,与y轴交于点B,点C的坐标为(3,0),连结BC. (1
如图,在平面直角坐标系中直线y=-x+3交x轴、y轴分别于A、B两点,P为AB的中点,点C在线段AP上(不与A、P重合)
如图,在平面直角坐标系中,点O1的坐标为(-4,0),以点O1为圆心,8为半径的圆与X轴交于A、B两点,过A作直线l与x
在平面直角坐标系xOy中,抛物线y=-x2+bx+c与x轴交于A(-1,0),B(-3,0)两点,与y轴交于点C.
如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(A在B的左侧),与y轴交于点C(0,4),顶点为(1,9/2).
如图 在平面直角坐标系中,抛物线y=x^2-2x-3与x轴交于A,B两点(点A在点B的左侧)与y轴交于点C.