1、设f(x)=ax^2+|bx|+1 (a,b属于R)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 06:58:18
1、设f(x)=ax^2+|bx|+1 (a,b属于R)
(1)若f(-1)=0,且对任意实数x均有f(x)大于等于0成立,求f(x)的表达式
(2)在(1)条件下,当想-2≤x≤2,g(x)=xf(x)-kx是增函数,求实数k的范围
2、一直定义域为R的函数f(x)=2^x+n/2^x+m是奇函数
(1)求m、n
(2)若对任意t属于R,不等式f(t^2-2t)+f(2t^2-k)
(1)若f(-1)=0,且对任意实数x均有f(x)大于等于0成立,求f(x)的表达式
(2)在(1)条件下,当想-2≤x≤2,g(x)=xf(x)-kx是增函数,求实数k的范围
2、一直定义域为R的函数f(x)=2^x+n/2^x+m是奇函数
(1)求m、n
(2)若对任意t属于R,不等式f(t^2-2t)+f(2t^2-k)
1.⑴f(-1)=0,得a+b+1=0,a=-b-1①,
对任意实数x均有f(x)大于等于0成立,所以a>0②且b^2-4a≤0③,
将①代入②③得不等式组,b0,得
3x^2+4x+(1-k)>0,令h2(x)=3x^2+4x+(1-k),则由0≤x≤2时,h2(x)>0恒成立,充要条件为h2(0)>0,故k
对任意实数x均有f(x)大于等于0成立,所以a>0②且b^2-4a≤0③,
将①代入②③得不等式组,b0,得
3x^2+4x+(1-k)>0,令h2(x)=3x^2+4x+(1-k),则由0≤x≤2时,h2(x)>0恒成立,充要条件为h2(0)>0,故k
数学题 在线等 人才们请进设函数f(x)=ax^+bx+1(a,b属于R)
已知二次函f(x)=ax^2+bx+1(a>0,a,b属于r),设方程f(x)=x有两个实数根x1,x2.
设f(x)=ax^2+bx+c(a,b,c属于R),已知|f(-1)|≤1,|f(0)|≤1,|f(1)|≤1,求证:当
设二次函数f(x)=ax^2+bx+c(a,b,c属于R,a不等于0)
已知二次函f(x)=ax^2+bx+1(a>0,b属于r),设方程f(x)=x有两个实数根x1,x2.
高一函数恒成立设二次函数f(x)=ax^2+bx+c(a,b,c属于R),满足下列条件:(1)x属于R时,f(x)的最小
已知函数f(x)=ax^2+bx+1(a,b属于R)
已知函数f(x)=ax^2+bx+1(a,b为实数),x属于R,F(x)={f(x),x>0 -f(x),x
已知实数a,b,c属于R,函数f(x)=ax^3+bx^2+cx满足f(1)=0,设f(x)的导函数为f’(x),满足f
已知函数f(x)=ax^2+bx+1(x,a,b属于R)【高一数学单调性】
设函数f(x0=-1/x,g(x)=ax^2+bx(a.b属于R,a不等于0)若y=f(x)的图像与y=g(x)的图像有
设函数f(x)=ax^2+bx+1(a,b属于R) (1)若f(-1)=0,对于任意实数x,f(x)大于等于0都成立,求