点A,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上且位于x轴上方BA垂直于
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 08:25:44
点A,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上且位于x轴上方BA垂直于PF
(1)求点p坐标
(2)设M是椭圆长轴AB上的一点M到直线BP的距离等于|MA|,求椭圆上的点到点M的距离d的最小值
(1)求点p坐标
(2)设M是椭圆长轴AB上的一点M到直线BP的距离等于|MA|,求椭圆上的点到点M的距离d的最小值
1.A(-6,0),B(6,0),F(4,0)
点P坐标,设为(x,y),y>0,x^2/36+y^2/20=1 (1)
PA、PF互相垂直,其斜率相乘为-1
即 y/(x+6) * y/(x-4)=-1 => y^2=-(x+6)(x-4) (2)
将(2)代入(1)中,x^2/36-(x+6)(x-4)/20=1
=> 2x^2+9x-18=0
=> x=3/2,x=-6 代入(2)中
x=3/2 时 ,y^2=-(6+1.5)/(1.5-4)=7.5/2.5=3 而y>0 所以 y=√3
x=-6 时 ,y^2=0 => y=0不合题意,舍去
故所求点P的坐标为(3/2,√3)
2,由P(3/2,5√3/2)得L(AP):(y-0)/(5√3/2-0)=(x+6)/(3/2+6)则L(AP):x-√3y+6=0∵M到AP距离=lMBl,M(x,0) |x+6|/2=l6-xl(-6
点P坐标,设为(x,y),y>0,x^2/36+y^2/20=1 (1)
PA、PF互相垂直,其斜率相乘为-1
即 y/(x+6) * y/(x-4)=-1 => y^2=-(x+6)(x-4) (2)
将(2)代入(1)中,x^2/36-(x+6)(x-4)/20=1
=> 2x^2+9x-18=0
=> x=3/2,x=-6 代入(2)中
x=3/2 时 ,y^2=-(6+1.5)/(1.5-4)=7.5/2.5=3 而y>0 所以 y=√3
x=-6 时 ,y^2=0 => y=0不合题意,舍去
故所求点P的坐标为(3/2,√3)
2,由P(3/2,5√3/2)得L(AP):(y-0)/(5√3/2-0)=(x+6)/(3/2+6)则L(AP):x-√3y+6=0∵M到AP距离=lMBl,M(x,0) |x+6|/2=l6-xl(-6
点A,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上且位于x轴上方PA垂直于
已知点A、B分别是椭圆X^2/36十y^2/20=1长轴的左右端点;点F是椭圆的右焦点,点P在椭圆上,且位于X轴上方PA
已知点A ,B分别是椭圆x^2/36+y^2/20=1长轴的左右端点,点F是椭圆的右焦点,点P在椭圆上,且在x轴上方,P
点A,B分别是椭圆X^2/36+Y^2/20=1长轴的左,右端点 ,点F是椭圆的右焦点,点P在椭圆上,且位于x轴上方,P
已知椭圆X方/A方+Y方/B方=1的左右顶点上分别是A、B,右焦点是F,过F点作直线与长轴垂直,与椭圆交于P、Q两
问一道高二圆锥曲线题A B为椭圆x2/36+y2/20=1长轴的左右端点,F为右焦点,P在椭圆上,位于x轴上方,PA⊥P
椭圆x^2/a^2+y^2/b^2=1(a>b>0)的右焦点F,其右准线与X轴的交点为A,在椭圆上存在点P满足AP的垂直
已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的左焦点为F,右顶点为A,点B在椭圆上,且BF垂直X轴,直线AB
已知椭圆x^2/a^2+y^2/b^2=1 a大于b大于0 的左焦点为F,右顶点为A,点B在椭圆上,且BF垂直于X 直线
椭圆x^2/a^+y^2/b^2=1上的点M与椭圆右焦点F1的连线MF1与x轴垂直,且OM与椭圆长轴和短轴点的连线AB平
已知点F1F2分别是椭圆X^2/a^2+Y^2/b^2等于1的左右焦点,过F1且垂直于X轴的直线与椭圆相交与A,B两点
已知X2/a2+Y2/b2=1,焦点于X轴上,左焦点为F,右焦点为A,点B在椭圆上,且BF垂直于X轴,AB交Y于P,若A