已知数列 大括号 bn 大括号( n N*) 是递增的等比数列,且b1 +b3 =5,b1乘b3=4 求数列 bn 的通
已知数列an=3的n-1次方,bn为等差数列,且a1+b1,a2+b2,a3+b3成等比,求数列bn的通项
已知数列{an}的前n项和Sn=n2(n∈N*),数列{bn}为等比数列,且满足b1=a1,2b3=b4
已知数列{an}是等比数列,数列{bn}是等差数列,且b1=a1,b3=a2,b7=a3,求数列{an}的公比
已知数列an的通项公式为an=3^n-1,在等差数列bn中,bn>0(n属于n*),且b1+b2+b3=15
已知等比数列{an}的通项公式为an=3^(n-1),设数列{bn}满足对任意自然数n都有b1/a1+b2/a2+b3/
已知数列{an}前n项和Sn=2n-3n数列{bn}是各项为正的等比数列 满足 a1=-b1,b3*(a2-a1)=b1
高三数列题:已知数列an是递增等差数列,bn是等比数列,且a1=1,b1=2,a4=b2,a8=b3↓
已知数列{an}成等差,数列{bn}满足bn=(1/2)的an次方,且b1+b2+b3=21/8,b1*b2*b3=1/
数列bn是等比数列,b1+b2+b3=21/8, b1b2b3=1/8 数列an中 an=log2^ bn,求数列an的
等比数列bn=0.5*2^(n-1) Tn=b1*b2*b3.bn ,求Tn的通项公式
已知(AN)等差数列,BN等比数列,A1=B1=2B4=54,A1+A2+A3=B2+B3 求数列(BN)的通项公式和(
已知数列{an}的前n项和sn=2n×n-3n,数列{bn}是正项等比数列,满足a1=-b1,b3(a2-a1)=b1.