求值:cos(3π/8-θ)cos(5π/24-θ)+sin(π/8+θ)sin(7π/24+θ)
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/18 05:11:20
求值:cos(3π/8-θ)cos(5π/24-θ)+sin(π/8+θ)sin(7π/24+θ)
学到三角恒等式的 诱导公式 那里
求值:cos(3π/8-θ)cos(5π/24-θ)+sin(π/8+θ)sin(7π/24+θ)
我算到一半算不下去了
π是派(pai)哦...
=2cos(3π/8-θ)cos(5π/24-θ)
=cos(3π/8-θ-5π/24+θ)+cos(3π/8-θ+5π/24-θ)
只是搞不懂这两步之间怎么变过去的...我自己就做到=2cos(3π/8-θ)cos(5π/24-θ) 这步
学到三角恒等式的 诱导公式 那里
求值:cos(3π/8-θ)cos(5π/24-θ)+sin(π/8+θ)sin(7π/24+θ)
我算到一半算不下去了
π是派(pai)哦...
=2cos(3π/8-θ)cos(5π/24-θ)
=cos(3π/8-θ-5π/24+θ)+cos(3π/8-θ+5π/24-θ)
只是搞不懂这两步之间怎么变过去的...我自己就做到=2cos(3π/8-θ)cos(5π/24-θ) 这步
注意关系3π/8-θ=π/2-(π/8+θ)
5π/24-θ=π/2-(7π/24+θ)
所以原式=cos(3π/8-θ)cos(5π/24-θ)+cos(3π/8-θ)sin(7π/24+θ)
=cos(3π/8-θ)cos(5π/24-θ)+cos(3π/8-θ)cos(5π/24-θ)
=2cos(3π/8-θ)cos(5π/24-θ)
=cos(3π/8-θ-5π/24+θ)+cos(3π/8-θ+5π/24-θ)
=cosπ/6+cos(7/12π-2θ)
这是积化合差公式
cosA*cosB=1/2[cos(A-B)+cos(A+B)]
5π/24-θ=π/2-(7π/24+θ)
所以原式=cos(3π/8-θ)cos(5π/24-θ)+cos(3π/8-θ)sin(7π/24+θ)
=cos(3π/8-θ)cos(5π/24-θ)+cos(3π/8-θ)cos(5π/24-θ)
=2cos(3π/8-θ)cos(5π/24-θ)
=cos(3π/8-θ-5π/24+θ)+cos(3π/8-θ+5π/24-θ)
=cosπ/6+cos(7/12π-2θ)
这是积化合差公式
cosA*cosB=1/2[cos(A-B)+cos(A+B)]
sin(θ-5π)cos[(-π/2)-θ]cos(8π-θ)}/sin[θ-(3π/2)]sin(-θ-4π)
求值:已知sinθ+cosθ=1/5,已知θ∈(0,π).
θ∈(0,π/2),比较cosθ、sin(cosθ)、cos(sinθ)的大小
8sin(π/32)cos(π/32)cos(π/16)cos(π/8),求值
sin(π-θ)+cos(2π-θ)/cos(5π/2-θ)+sin(3π/2+θ)=2,则sinθcosθ=_____
已知 sin(θ+kπ)=-2cos (θ+kπ) 求 ⑴4sinθ-2cosθ/5cosθ+3sinθ; ⑵(1/4)
求值:sin(π/12)+cos(π/12)
若(sinθ+cosθ)/(sinθ-cosθ)=2,则sin(θ-5π)*sin(3π/2-θ)等于?
(sinθ+cosθ)/(sinθ-cosθ)=2,则sin(θ-5π)*sin(3π/2-θ)=
已知向量m=(cosθ,-sinθ),n=(根号2+sinθ,cosθ),θ∈(π,3π/2),且cos(θ/2+π/8
(sinθcosπ/3)-(cosθsinπ/3)怎么化简得sin(θ-π/3)
①化简[sin(2π+α)*cos(7π-α)]/cos(-α)②已知cosθ=-3/5,θ∈(π/2,π),求sin(