若z为虚数有z^2=共轭z,则(z^2+1)^2+z+1等于?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 10:00:22
若z为虚数有z^2=共轭z,则(z^2+1)^2+z+1等于?
z^2=共轭z
z=a+bi,a,b∈R,b≠0
(a+bi)²=a-bi
a^2-b^2+2abi=a-bi
a^2-b^2=a (1)且 2ab=-b (2)
(2)==>b=0(舍去)或a=-1/2
将a=-1/2代入(1)得b^2=3/4
b=±√3/2
∴z=-1/2±(√3/2) i
(z^2+1)^2+z+1
=(^z+1)^2+z+1
z=-1/2+(√3/2) i
原式=(1/2-√3/2i)^2+1/2+(√3/2) i
= 1/4-√3/2i-3/4+1/2+(√3/2) i
=0
z=-1/2+(√3/2) i
原式=(1/2+√3/2i)^2+1/2-(√3/2) i
= 1/4+√3/2i-3/4+1/2-(√3/2) i
=0
∴(z^2+1)^2+z+1=0
z=a+bi,a,b∈R,b≠0
(a+bi)²=a-bi
a^2-b^2+2abi=a-bi
a^2-b^2=a (1)且 2ab=-b (2)
(2)==>b=0(舍去)或a=-1/2
将a=-1/2代入(1)得b^2=3/4
b=±√3/2
∴z=-1/2±(√3/2) i
(z^2+1)^2+z+1
=(^z+1)^2+z+1
z=-1/2+(√3/2) i
原式=(1/2-√3/2i)^2+1/2+(√3/2) i
= 1/4-√3/2i-3/4+1/2+(√3/2) i
=0
z=-1/2+(√3/2) i
原式=(1/2+√3/2i)^2+1/2-(√3/2) i
= 1/4+√3/2i-3/4+1/2-(√3/2) i
=0
∴(z^2+1)^2+z+1=0
若/Z/=1且z为虚数,求证z/(1-z^2)为纯虚数
已知z|=1,且Z为虚数,求证:z/(1-z^2)为纯虚数
复数z的共轭复数为-z,已知z=2i/1-i,则z×-z=?
已知虚数z,|z|=√2,且z^2+2z'(z'为z的共轭复数)为实数.求虚数z的值;
:若f((z+1)的共轭)=2z+z的共轭+i,则f(i)等于( )
若复数Z满足z-2i=1+zi(i为虚数单位),则Z等于多少
原题是设Z等于1+2i,i为虚数单位,Z+Z(上面有一横)=
设i是虚数单位,zˉ是复数z的共轭复数,若Z·Zˉi+2=2z ,则 z
设z∈C,Z是z的共轭复数,且z(2+i)为纯虚数,z*Z=20,求复数z
虚数Z满足Z的模=1,Z^2+2Z+1/Z
虚数z满足绝对值z=1,且z^2+2z+1/z
若复数 z 满足:z+z(共轭复数)=2,z·z(共轭复数)=2,则|z-z(共轭复数)|=______________