作业帮 > 数学 > 作业

如图,AB=AC,AE=CF,CE、BF交于点D,BD=DF,求:AF/AE=?

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 09:14:18
如图,AB=AC,AE=CF,CE、BF交于点D,BD=DF,求:AF/AE=?

如图,AB=AC,AE=CF,CE、BF交于点D,BD=DF,求:AF/AE=?
作FG//AB交CE于G.
则有 FG/AE=CF/AC,BE/FG=BD/DF,
因为 BD=DF,
所以 BE=FG,
所以 BE/AE=CF/AC,
因为 AB=AC,AE=CF,
所以 BE=AF,
所以 AF/CF=CF/AC,即:CF平方=AF乘AC
所以 点F是线段AC的黄金分割点,
所以 CF/AC=[(根号5)--1]/2,
所以 AF/AE=AF/CF=CF/AC=[(根号5)--1]/2.