求证:llim(n—>无穷)(a1^n+a2^n.+ak^n)^1/n=max(1
llim(n—>无穷)(a1^n+a2^n.+ak^n)^1/n 其中ai>=0,i=1,2,.,k.求极限
设A=max{a1,a2,.am},其中ak>0,lim(a1^n+a2^n+…+am^n)当n趋于无穷时?
微积分证明数列极限,设ai≥0,i=1,2,...,k,求证:lim(a1^n+a2^n+...+ak^n)^1/n=m
lim an =0 (n->无穷) 求证 lim(a1+a2+...+an)/n=0 (n->无穷)
给定an=log(n+1)^(n+2)(n∈N*),给定乘积a1*a2*...*ak为整数叫做“理想数",则区间[1,2
给定数列{An}满足An=[lg(n+2)]/[lg(n+1)] n∈N*,定义乘积A1*A2*~~~~*Ak为整数时的
设数列an=logn+1(n+2)(n是正整数),定义使a1*a2*a3.ak
已知数列{an}满足:an=log(n+1)(n+2),n∈N+,我们把使a1•a2•a3•…•ak为整数的数k(k∈N
夹逼定理求极限,Xn=(A1^n+A2^n+……+Ak^n)开n次方,其中A1>A2>……>Ak>0
数列题求通项a1+2a2+...+nan=n(n+1)(n+2)a1+2a2+..+(n-1)a(n-1)=(n-1)n
An=C(1,n)a1+C(2,n)a2+…C(n,n)an,
已知数列{an}中,a1+a2+a3+……+an=3^n-2^n/2^n(n=1,2,……)求证{an}是等