证明有限整环必定是域设(A,+,•)是一个有限整环,所以对于a,b,c∈A,且c≠0.若a≠b,则aR
来源:学生作业帮 编辑:大师作文网作业帮 分类:综合作业 时间:2024/11/13 23:22:57
证明有限整环必定是域
设(A,+,•)是一个有限整环,
所以对于a,b,c∈A,且c≠0.若a≠b,则a•c≠b•c,
再由运算的封闭性,就有A•c=A.对于乘法幺元1,
由A•c=A,必有d∈A,使d•c=1,故d是c的乘法逆元.
因此,有限整环(A,+,•)是一个域.
证毕.
“再由运算的封闭性,就有A•c=A.对于乘法幺元1,
由A•c=A,必有d∈A,使d•c=1,故d是c的乘法逆元.”这是怎么来的?
抱歉,你的方法我也没理解..我是纯自学离散数学这门课的
设(A,+,•)是一个有限整环,
所以对于a,b,c∈A,且c≠0.若a≠b,则a•c≠b•c,
再由运算的封闭性,就有A•c=A.对于乘法幺元1,
由A•c=A,必有d∈A,使d•c=1,故d是c的乘法逆元.
因此,有限整环(A,+,•)是一个域.
证毕.
“再由运算的封闭性,就有A•c=A.对于乘法幺元1,
由A•c=A,必有d∈A,使d•c=1,故d是c的乘法逆元.”这是怎么来的?
抱歉,你的方法我也没理解..我是纯自学离散数学这门课的
A•c是指A中所有元素分别右乘c后所得的元素的集合.所谓运算的封闭性是指两个A中的元素相乘,结果仍在A中.实际上题中由运算封闭性可得到A·c这一集合包含于A中.对于a,b,c∈A,且c≠0.若a≠b,则a•c≠b•c是指A·c的元素个数与A相同,从而A·c=A.
这时A·c中就有A的乘法单位元(也就是幺元),从而有D∈A·c使得D=1,另外,D又可以写成d·c(A·c的性质)其中d∈A.从而我们对于任意A中不为零的元素c都可以找到A中的元素d使得c·d=1,也就是c可逆
从而A是域
这时A·c中就有A的乘法单位元(也就是幺元),从而有D∈A·c使得D=1,另外,D又可以写成d·c(A·c的性质)其中d∈A.从而我们对于任意A中不为零的元素c都可以找到A中的元素d使得c·d=1,也就是c可逆
从而A是域
一个集合证明题对任意三个集合A、B、C,证明:若A×B=A×C,且A≠空集,则B=C
设A,B是有限集合,且|A|=|B|,又f:A->B是一个映射,证明:f是单射f是满射.
对于集合A,B,我们把集合{x|x∈A,且x∉B}叫做集合A与B的差集,记作A-B.若集合A,B都是有限集,设集合A-B
1.下列四个命题A.无限集的真子集是有限集 B.任何一个集合必定有两个子集 C.自然数集是整数集的真子集 D.1是质数集
若向量a与b不共线,a.b≠0,且c=a-[(a.a)/(b.b)].b,则向量a与c的夹角是?
1. 对任意三个集合A、B和C,试证明:若A×B=A×C,且A≠ Φ,则B=C.
已知:(a+b-c)/c=(b+c-a)/a=(c+a-b)/b,a+b+c≠0.求证::(a+b)(b+c)(c+a)
证明设f(x)在有限开区间(a,b)内连续,且f(a+) ,f(b-)存在,则f(x)在(a,b)上一致连续.
证明:若a>b,则a-c>b-c
4、对于有限集合A、B、C,能不能找出这三个集合中元素个数与交集、并集元素个数之间的关系呢?是?
若a.b.c分别是一个三位数的百位,十位,个位数字,且a≤b≤c,则|a-b|+|b-c|+|c-a|的最大值,
如果一个三位数的三个数字分别是a,b,c,且(a+b+c)能被9整除.求证:这个三位数必定被9整除.